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What is a graph?

Node / vertex

Edge

Graphs encode relations 
between entities



What is a graph?

Node / vertex

Edge

Edges can be directed



What is a graph?

Node embedding

Edge embedding

Information is stored in 
each piece



Where do we find graphs

Social networks
> 1B nodes > 10B edges Biological systems

Clamydomonas reinhardtii 



Where do we find graphs

Eurovision Economics



An image is a graph with regular structure
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A sentence can be viewed as a directed graph
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Graphs are a natural representation in chemistry

Molecules Crystals

R Conv

+ ...

L1 hidden Pooling L2 hidden
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All graphs are not alike

The size and connectivity of graphs can vary enormously

Fully connected Sparse

Dataset Graphs Nodes Edges
Fully con. 1 5 20
Sparse 2 <4 <3

Wikipedia 1 12M 378M
qm9 134k <10 <26
Cora 1 23k 91k



The types of problems tackled with graphs

Graph level
e.g. total energy

of a molecule

Node level
e.g. oxidation 

state of an atom

Edge level
e.g. strength of 

a bond



Graph networks enabled Alpha Fold (node level)

Protein as a graph with amino acids (nodes) linked by edges

Used to calculate interactions between parts of the protein



Deep learning with graphs

Include adjacency matrix as features in a standard neural network

Issues: fixed size and sensitive to the order of nodes
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Deep learning with graphs

A convolutional neural network (CNN) filter transforms and 
combines information from neighbouring pixels in an image

0 –1 0

–1 4 –1

0 –1 0

Convolution filter
learned during training to extract 
higher level features e.g., edges



Convolutions on graphs

Images can be seen as a regular graph; 
can we extend the concept of convolutions?

Convolution from neighbours

to central node



Convolutions on graphs

By iterating over the entire graph each node 
receives information from its neighbours



Where do neural networks come in?

Neural networks are used to decide:

Message
What get passed 
from one node to 

another

Pooling / Aggregation
How messages 

from all neighbours 
are combined

Update
How the node is 

updated given the 
pooled message

Σ



Components of a convolutional graph network

Message function

Pooling function

Update function

𝑖

𝑗

𝒗!
𝒎" = &
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Convolutional graph networks introduced in 2017



Implementation of neural network functions

Message function:              (no processing)  

Pooling function:              (normalised sum)

Update function:              (MLP)

𝒎" = ,
!∈𝒩 "

𝒗!
𝒩 𝑖

𝒗!

𝒗"& = 𝜎 𝐖𝒎" + 𝐁𝒗"

non-linearity weights

num neighbours



Visual depiction of a graph convolution

𝒗!
1. Prepare messages

𝒗!

𝒗!
𝒗!

𝒗"



𝒗!𝒗!𝒗!𝒗!

Visual depiction of a graph convolution

𝒎"

1. Prepare messages

2. Pool messages
𝒗"



Visual depiction of a graph convolution

𝒗"&

1. Prepare messages

2. Pool messages

3. Update embedding



Requirements of the pooling function

The pooling function must be invariant to node ordering 
and the number of nodes

All take a variable number of inputs and provide an 
output that is the same, no matter the ordering

4

2

?

Function Node value
Max 4

Mean 3
Sum 6



𝒗"& = 𝜎 𝐖 ,
!∈𝒩 "

𝒗!
𝒩 𝑖

+ 𝐁𝒗"

Training convolutional graph neural networks

Feed the final node embeddings to a loss function

Run an optimiser to train the weight parameters

𝐖	and 𝐁 are shared across all nodes



Inductive capabilities and efficiency

Each node has its own network due to its connectivity

Message, pool, and update functions are shared for all nodes

Can increase number of nodes without increasing 
the number of parameters

Can introduce new unseen node structures and just plug in 
the same matrices



Stacking multiple convolutional layers

Only looked at a single convolution – can we stack multiple layers? 

𝒗"
(%()) = 𝜎 𝐖(%) ,
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Weights are unique for each layer



Why multiple convolutions?

Graph are inherently local – Nodes can only see 
other nodes 𝒕 convolutions away

Multiple convolutions increases the “receptive field” of the nodes

0 2 3 41

𝒕 = 𝟏
𝒕 = 𝟑

𝒕 = 𝟐

Not seen 
by node 0



The over smoothing problem

However, too many convolutions causes over smoothing —
all node embeddings converge to the same value

𝒕 = 𝟎 𝒕 = 𝟏 𝒕 = 𝟐 𝒕 = 𝟑



What about edge embeddings

Only considered node updates but graphs have edges too —
can we learn something about edges from nodes?

Edge embedding

𝑖

𝑗
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stays the same



Message passing networks – significant flexibility

Many options for how to treat 
edges in the pooling function

Edge embeddings may have 
different dimensionality to node 

embeddings

An option is to pool all edges and 
concatenate them at the end



Message passing networks – significant flexibility

Can update nodes before edges 
or vice versa

Or have a weave design to pass 
messages back and forth 

All flexible design choices in 
message passing networks



Convolutional graph networks for crystals

Graphs are a natural representation for crystals and but 
we have extra design constraints

Networks should be 
permutation and 

translation invariant

Properties depend on atom 
types and coordinates not 

just connectivity



Constructing the graph from a crystal structure

Must consider periodic boundaries

Include all atoms within a certain cut-off as neighbours

𝑟./0 Perform the procedure for each 
atom in the unit cell

Nodes can share multiple edges to 
the same neighbour due to PBC



Crystal graph convolutional neural networks (CGCNN)

CGCNN was the first time graph convolutions were 
applied to crystals

R Conv

+ ...

L1 hidden Pooling L2 hidden

Output

Xie and Grossman Phys. Rev. Lett. 120, 145301 (2018)



Implementation of CGCNN

Message function:

Update function:
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Initialisation — node and edge embeddings

What to do for the initial node and edge embeddings?

Nodes
The element type is one-hot 
encoded (dimension of 119) 
and passed through an MLP

Edges
The bond distance is 

projected onto a Gaussian 
basis (40 basis functions)



Readout — calculating the final prediction

CGCNN generates graph level predictions, how are these 
generated from the final node embeddings?

𝒖4 =,
"∈𝒢

𝒗"
(6)

𝒢
Final pooling 
of all nodes

MLP
readout

num atoms

𝐸 = 𝜎 𝐖7𝐮4 +	𝒃7



CGCNN performance

CGCNN shows good accuracy for such a simple model but 
errors are still too large for reliable science



Advanced message passing networks

CGCNN only uses bond lengths as features. More advanced 
networks show improved performance

MEGNet
Skip connections and set2set pooling 

M3GNet
Bond angles and dihedrals



Vector and tensor properties — equivariance

Higher dimensionality properties (vectors, tensors) such as 
force and stress require equivariant models

force
rotate

Forces should transform commensurate with the structure



Equivariant features

This requires features that transform predictably under rotations

Credit: Tess Smidt, e3nn.org/e3nn-tutorial-mrs-fall-2021



Equivariant graph models

Higher dimensionality properties (vectors, tensors) such as 
forces and stresses require equivariant models

e3nn
High-order spherical harmonic basis

Nequip
MLIP tensorial features



A large number of graph networks exist



Graph networks and the MatBench dataset

npj Comput. Mater. 6, 138 (2020)

Graph neural networks are widely used for property 
predictions in chemistry but excel on larger datasets



Uses of graph networks

https://matbench.materialsproject.org

GNNs take up most of 
the top spots on the 
current leader board

Many high-performance 
MLIPs use graphs 

(MACE, nequip, allegro)



Universal force fields

Universal forcefields are 
an emerging paradigm 

in computational 
chemistry

Can be applied across 
the periodic table to 

predict energies, forces, 
and stresses



Matbench discovery leaderboard

Increasing:

- Accuracy
- Parameters
- Training data
- Equivariance

https://matbench-discovery.materialsproject.org



Summary

• Many datasets can be represented as graphs.

• GNNs work by i) building a graph and ii) propagating 
information between neighbours using NNs

• GNNs are scalable and can generalise well

• There are many possibilities for designing GNNs


