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Our approach

FHI-alMms

The ab initio materials
simulation package

Electronic Structure Theory

Machine Learning
of Electronic
Structure
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Develop machine learning surrogate models
of electronic structure

Nonadiabatic
Molecular
Dynamics

Coupling of Light
and Electrons

NQCDynamics.jl




Inverse property-driven design of electronic properties
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Deep learning of molecular spectroscopy
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Goal of this lecture

After this lecture (and accompanying workshop), you should ideally

Know the role of machine learning in the computational physical sciences
Understand the basic terminology of machine learning (“Slang busting”)
Have an overview of methodologies and how they connect

Understand how to approach a typical machine learning workflow

Know how to prepare and analyse datasets

Be able to validate and optimise models with cross-validation

Know basic approaches to featurisation and representation in chemistry
Know how to evaluate and assess prediction errors and uncertainties



Resources The Internet

OREILLY &%

Hands-On ,,
Machine Learning
with Scikit-Learn,
Keras & TensorFlow

Concepts, Tools, and Techniques
to Build Intelligent Systems

Aurélien Géron

Perspective on integrating machine learning into
computational chemistry and materials science

Cite as: J. Chem. Phys. 154, 230903 (2021); doi: 10.1063/5.0047760



Agenda

What is ML?

Basic Definitions

Data Representations and Features / Descriptors
Types of ML methods

Putting it all together

A S o

A research example



What is ML and how can it be useful?



" ————— ARTIFICIAL INTELLIGENCE
~ A technique which enables machines

Artificial Intelligence - to mimic human behaviour

MACHINE LEARNING

Subset of Al technique which use
statistical methods to enable machines
to improve with experience

e DEEP LEARNING
_______ Subset of ML which make the
computation of multi-layer neural
network feasible

Machine Learning is the field of study that gives the computer the ability to
learn without being explicitly programmed.
Arthur Samuel Learning from Data



ML is everywhere @

»  Medical outcome analysis

Hey SIRI, how far is the
nearest subway?

The nearest SUBWAY

is 4km away /

S

01100 -
iy 20110 g G0 g sefhedy
11110 O '
Decoding with the help of ML P . .
and neural network rocessing Desired output
User Siri Apple Server

Commonly used in Chemistry and Materials Science research



The ML paradigm and your email spam filter

Classical Computing Paradigm

Predefined set of criteria
that the code checks when
analyzing email content

M_

Mail

Determines
category

Machine Learning Paradigm

Learns from user/provider Spam
data what features of
emails are most likely
associated with spam

Predicts
category




Challenges in Chemistry & Materials Science

Accurate Quantum Chemistry is slow
Fast Quantum Chemistry is inaccurate

Interatomic potentials

= "
1) (no explicit electrons)
o >100nm and ps-s
Q
= Semi-empirical/
a tight-binding methods
8 <100nm and ps-us
31
)
=
&
8 Many Body Perturbation
Theory and Quant. Chem.
'<nm and ~fs

time/length scale >

Chemical compound space is
bigger than the known universe

D) Categories o

oligosaccharides', E

ACS Chem. Neurosci.
9, 649-657 (2012)

diamondoids

. - nAChR ligands
alkanes
By

10189 possible molecules 108° atoms in universe

108 known molecules

Machine Learning

Accelerate property prediction

can help!

Accelerate materials design



Why should you use ML in your research?

HY = E¥Y

Modular hybrid ML/QM code

Semi-empirical methods
ML-based Hiickel,
TB Hamiltonians
& repulsive energy

Model selection Model building
Bayesian error estimation active space selection

adaptive basis sets solvation models

pseudo-potentials

Modeling

ML integration Physically informed ML
MO & density prediction atomic orbital features

NN wavefunctions Hw symmetries

2-electron integrals
ML

Mixed levels of theory
A- learning
transfer learning

Electronic
structure

Local exploration Simulation
equilibrium search interatomic potentials
transition states nonadiabatic excited states
quantum dynamics
Global exploration Rare events
structure prediction IGREtirE A
generative models Structure Dynamics : e
reinforcement learning exploration coarseglaining

Computational spectroscopy
interatomic potentials
response properties

direct prediction

High-throughput screening
ML surrogate models
drug & catalyst design

m

=

o - Inverse design
< ata analysis ¥ eherylon ! generative models,
-ray spectroscopy i i
M Eacticoters Connect to reinforcement learning
experiment

Perspective: J. Chem. Phys. 154, 230903 (2021)

materials
druglike molecules
Data curation
organic molecules

= Property
prediction

i Algebra
engine | g
V’x(”‘ﬁ;(]); 7

er(2)p1(2)d nydry

Roadmap on ML in Electronic Structure
IOP Electronic Structure (2022)



The 4th paradigm of science

20

4" PARADIGM

3 PARADIGM Big-Data-
2nd PARADIGM Computational Driven Science

1st PARADIGM Theoretical gpier}ce,
Empirical Science Imulations

Science
|

Experiments Laws of classical Monte Carlo; Detection of
mechanics, molecular dynamics; patterns and
electrodynamics, density-functional anomalies in
etc. theory and beyond Big Data;

artificial

intelligence; etc.

000 O0OOOOOSOOSODS 1600..........0 1950.........2010 ................’



“Scientific” Machine Learning (SciML)

1. Machine Learning (ML) is an area of Artificial Intelligence (Al) that fits mathematical models to
observed data. ML is often applied as a black box, which can limit model transferability.

2. Scientific Computing uses large scale modelling of bottom-up 'real' physics/chemistry, typically

through numerical solution of differential equations.
This is accurate and predictive, but often very computationally expensive.

Scientific Machine Learning (SciML) combines the strengths of the two approaches.

physical laws + data-driven machine learning methods

Physical System

domain expertise human-interpretable
Forward

Machine  Numerical Simulation Data-driven

physics-informed neural networks Leaming  Methods
Loss Terms

Physics\> Hybrid

Inverse

symmetries and conservation laws Solvrdasl

limited quality data labels

Deep Learning



Automated Chemistry by Design (ACD) in Molecular Discovery

Chemistry by design means designing Chemical compound space is

the composition and structure of a bigger than the known universe
molecule or material to achieve

Chemist Machine
<+ —5

specific properties and reactivity 4 s ADtewis
Machine = Machine chooses mostly Machine chooses mostly
generates—— Chemist chooses from & synthesizable molecules synthesizable molecules
ideas machine-designed g from machine-designed, from machine-designed,
. . molecules 2 ideas for a single ideas for multiple
Various levels of automation g iteration iterations
can be imagined
°
= Chemist Machine chooses from Machine chooses from
E defines —— Ch:hmis:::::f :':m chemist-designed, mostly chemist-designed, mostly
§ e i synthesizable molecules synthesizable molecules
o for a single iteration for multiple iterations
S
< | | |
(‘.htemist| decides Machine decides, Mat:himaI decides,
single iteration multiple iterations
Automated Decisions B
i ?
How are new ideas generated: Goldman et al., J. Med. Chem. 65, 10, 7073-7087 (2022)

How are decisions made?



Basic Definitions



ML Definitions f

ML is concerned with algorithms that improve with increasing amount of available data
under some performance measure.

Find a predictive function that connects input space X to a target space Y
f: X~

ML focuses on universal approximators, able to represent any function with arbitrary
accuracy, when given enough training data and parameters.

The functional relationship to be found is specified by choosing a suitable
loss function 2(f(x), y).

If the loss function requires knowledge of targets (labels) y € Y,
we speak of supervised learning.



How it works Training Dataset
data that model sees to learn

1. Provide a training dataset, T

2. The machine is trained to capture statistical trends in T and
suggests a function f

3. ldeally, f(x;) = y; for all values

4. Then, given new (unseen) x' values,
the model should predict f(x') =y’

5. We can validate how much the model has learned with a test set of data

for which the ground truth is known

Test/Validation Dataset
Data that is unseen to assess learning. Generate by splitting off some data (~20%)



We train a model by minimising risk

The optimal model minimizes the expected risk, R(f), defined as the
expectation value of £(f(X),Y):

R(f) = (L0, YP) = [£(f (X0, Y) dP(X,Y)

We typically don’t know the underlying data distribution P (X, Y) so we use
the empirical risk instead, which is the expectation over a finite data set T':

neT

1
Remp(f) =~ £(F(x), )
i=1

The ML training process is the process of minimizing Remp or the loss.



Different types of loss functions

Different ways to measure distances between the ground truth
and the model prediction f by a single number.

L1-norm n
J(f) = Zlfi(xi) — il Least absolute deviations
i

L2-norm

J(f) = Z(fl-(xi) — v;)? Least square regression

L1 norm more robust against outliers, but more difficult to optimize



Training and Overfitting

Unfortunately, f(x;) = y; does not hold and
there is an error

Many functions canmap X - Y

Let F be the set of functions that map X — UY

The accuracy of any f € F is determined by the
loss function £(f(X),Y) Loss landscape

Training is the process of minimizing the loss  https://losslandscape.com/explorer

e.g. through (stochastic) gradient descent

Since the set F is large, we introduce regularizer terms to the optimization
problem, which punish complex solutions that lead to overfitting



Without regularization With regularization

Overfitting yields an increased error on unseen data by approximating a simple
functional relationship with an overly complex function on the training set



(a) without skip connections (b) with skip connections

arXiv-1712.09913 ResNet-56 with and without skip connections



underfitting

training error: high
validation error: high

Model is not sufficiently
complex and flexible to
capture data

appropriate fitting

training error: low
validation error: low

Model is suitably complex
to capture trends in data

overfitting

X

training error: low
validation error: high

Model is overly complex
and will likely not generalize
to other samples



How do we quantify the performance of a model?

Residual sum of squares

Coefficient of determination /

11— mean_test_MAE
R? =9, — Z,-(y; = f,')?‘ | mean_train_MAE
Zz(yi - u)2

Total sum of squares (distance from mean u) _ /

MAE

Mean Absolute Error
AT — > g \y;t— fil

Root Mean Squared Error :
RMSE — \/Z,:(y;n— fi)?

“flexibility of the model”

o (e.g. number of parameters)
y; ... ground truth label for data point i

f; ... model prediction for data point i Try to achieve lowest possible test set error




Types of ML methods



Parameterization

Pattern recognition

X

Unsupervised ML
(unlabeled data)

Dimension
reduction

X

Exploratory analysis:
(leading to hypothesis)
Clustering
Dimensionality reduction

Supervised ML
(labeled data)

X

»

Regression

‘‘‘‘‘‘

X

Classification

Lf(xy)e

A ® o

Confirmatory analysis:

Deep Learning

Deep learning approaches
exist for all types of ML

(models that test ideas)

* Regression
e C(lassification



Data Representation and Features

Whatis theinputx iny = f(x)?



Examples of Molecular Data Representations

Molecular

|

representations
String/line Chemical Feature
table based
Registry Structure
system based
| |
E.g., E.g., InChlI, E.g., MDL E.o. ECFP

CAS RN SMILES ’ ‘ molfile B0 RNN, GAN

* Registry systems

Chemical Abstract Services Registry Number
PubChem CID

ChemSpider

ChEMBL

WIREs Comput Mol Sci. 2022; 12:e1603

* Lewis structures (2D graph)

Computer
learned
0 HCI
R N P
E.g, VAE, 0 k

* String representations

Generic names®
Mol. formula
IUPAC name

CAS RN
Canonical SMILES

InChl

WLN®

Dicycloverine HCl, benacol, bentyl, dibent, Dyspas, and so on

CioHss CINO,

2-(Diethylamino)ethyl 1-cyclohexylcyclohexane-1-carboxylate hydrochloride
67 —92 -5

CCN(CC)CCoC(=0)CT1(ccceen)czccecez.cl

InChl = 1S/C19H35N02.CIH/c1-3-20(4-2)15-16-22-18(21)19
(13-9-6-10-14-19)17-11-7-5-8-12-17,/h17H,3-16H2,1-2H3;1H
InChlKey:GUBNMPFJOJGDCEL-UHFFFAOYSA-N

LETJA-AL6TJAVO2N2&2&GH



SMILES

Simplified Molecular Input Line Entry System
String of ASCII characters that defines a molecule

Atoms are represented with their chemical symbol

Single bonds are implicit or (-), double bonds (=), triple bonds (#)

Rings represented via a number after the initial atom and closing atom (e..g C1ICCNCC1)
Branching: represented with parentheses around the branch

Aromaticity: aromatically bonded atoms in lower case or alternating -C=C-

Clcccccl,
C1=C-C=C-C=C1,
C1=CC=CC=C1

g

Hard to represent unsaturated bonds, 4-ethylheptane:

radicals, or unusual valences/bonding CCCc(cc)ccc

No info on molecular conformation CHs

Not well suited for generative models /\/l/\/\
CH3 CHs

DeepSMILES

SELFIES (self-referencing embedded strings)



Extended Connectivity Fingerprints, ECFP
(a.k.a. Morgan or Circular Fingerprints)

Based on molecular graphs
Interpretable in terms of local atom groups

Subgraphs are generated for each atom at
each radius and a unique identifier is
created with a hash function

import hash from 'crc-32°';

const feature = [ 1, 2, 3, 4 ];
const identifier = hash.buf(feature); // -1237517363

0
1/\/[/\ 1. Initial assignment stage
3 N?{ : —4080868480043360372

ik

2 8311098529014133067
3 8311098529014133067
4: -2155244659601281804
5: -3602994677767288312
6 8573586092015465947

2. Iterative updating
stage (Morgan algorithm

3. Duplicate identifier
removal stage

Iteration 0 Iteration 1 [teration 2

4. Forming the bit array

Implemented in

Rogers, D.; Hahn, M. "Extended-Connectivity Fingerprints.” J. Chem. Inf. and Model. 50:742-54 (2010) RDKit



2. Iterative updating
stage (Morgan algorithm)

Diameter 0:

-0

x "

Diameter 2:

......

Qﬁ
o *
0 x 0
W W
i/\

e

|dentifiers:

-1266712900
-1216914295
78421366
-887929888
-276894788

-744082560
-798098402
-690148606
1191819827
1687725933
1844215264

-252457408
132019747
-2036474688
-1979958858
-1104704513



2. Iterative updating
stage (Morgan algorithm)

NH

3. Duplicate identifier
removal stage \Z

4. Forming the bit array 1 0 1 0 1 1 0 0

Many more descriptors from cheminformatics
(e.g. SMILES Cligues, molecular fingerprints)
But the typically don’t have “atomic resolution”



Data Representation / Featurization for Molecules & Materials

Maximum

- Transition Structure
H LIJ —_— E LIJ (1st Order Saddle Point) /
Reactant
(Local Minimum)

Product
~\ (Global Minimum)

Molecules & Materials

7)

Energy landscape encodes:

* Rotational/Translational invariance
* Permutation invariance

* Symmetry/Local Features




XYZ atomic positions give a terrible representation

B
>

Target Property
=]
] oo
Target Property

o000

Calculation #

Bad representation for target

2.0 e 2 [[5.

Descriptor d, [5.
5.

Good representation

XYZ coordinates do not capture the
basic structural symmetry properties S

of molecules and materials

[[-7.

[-6.236761

0. 0.119262]
0.763239 -0.477047]

-0.763239 -0.477047]]

'--..____--‘.»

7 9.119262] (/\
7.763239 8.522953]
6.236761 8.522953]]

~— /o
[ O ]

9.119262]
8.522953]
8.522953]]




Requirements on molecular representations (a.k.a. descriptors)

translau'ons f

Symmetry Invariance:

R\, b Mapping onto the same point
'- ..t'
v, rotations ~,\ -.,__1.
; g completeness *
i1

in feature space
structure space

rad Lf

Completeness & Uniqueness:

3 Being able to distinguish all
symmetry-inequivalent
arrangements by mapping onto

symmetry 2

L.  feature space\ different points in feature space
smoothness ‘
4 Smoothness:
- i additivity Smooth changes in atomic

positions lead to smooth
changes in feature space

Chem. Rev. 2021, 121, 16, 9759-9815



Nomenclature

*  Structure: Atomic positions, chemical species, unit cell

 Descriptor: A specific method for transforming the structure of
different molecules/materials into a constant vector with correct
symmetry properties

 Feature vector: A vector of numbers produced by converting the
structure according to a certain descriptor. The feature vector is the
structural representation in “feature space”

Global descriptors Atom-wise descriptors



There are many atomic descriptors ...

. s . u
MTP {2} projection "GP (2(‘3)) p?nmiam 9(n) (2)
SNAP (4) atomic polynomials MBTR (2,3)
imi sharp symmetry s Sce Wasserstein
3 limit / functions 1 hlstograms\ s
blur permutations red
smooth  densi (average) SO PIV (2)
SOAP (3) correla _distances gog (2)
FCHL (2,3.4) features : rmutations Sorted CM (2)
wh?vgée}s ()3) equivalent (histogram)
ICE (n* rotations
i atom S al FP (n
(density products) oniro %e;&m (n())
. distributions sorted
Diffraction FP ) molecu'ar /eigenvalues
translations matrices Permutations
LODE (n) tential ) : (sorting)
symmetrized ‘_,,p?iegds global ™ d‘g‘"‘.‘ internal /n'on-ll_near
local field translations transform ﬁelng'sty coordinates functions
& rotations 30 Voxel Z matrix
symmetry _ molecular
other relation permutations taa&s&tj»g:ss graphs

family of features
named features (body order)

2,3,4: radial, angular, dihedrals !
n: n-body Cartesian
n*: complete n-body linear basis coordinates

Chem. Rev. 2021, 121, 16, 9759-9815

| will cover

Coulomb Matrix (CM)
MBTR

SOAP

ACE



Coulomb Matrix

(369 33.7 55 31 55 b55]
33.7 735 40 82 38 338

55 4.0 05 035 056 0.56

_ 31 82 035 0.5 043 0.43
A global representation 55 3.8 056 043 05 0.56

Nuclear charges and atomic distances |55 3.8 056 043 056 0.5
Doesn’t work for periodic systems

Molecules of different sizes require padding with zeros

Adaptations for periodic systems exist

0.5Z24 fori=j

Coulomb
Ml] — Z; ZJ- . .
R fOI‘ 2 % j
ij

Rupp et al. Phys. Rev. Lett. 108, 058301 (2012)



Many Body Tensor Representation (MBTR)

* For each pair, triple, etc. of atom types, MBTR encodes a “spectrum of distances”

N, Z, -
fz(x,zl,zz):sz(i,j)D(x,gz(i,j))Cz,,z,.Czhz, i z, i HZO
= zwl_ o H 0
N, k _ ~ _ H o _ H /E_ ;\‘ _/
fi(x,2) = Zwk(i)D(xegk(i)) HCz,.z,,. M J\ e
i—=1 j=1 . H H ‘/L H E ------- A i
g, (i,}) ... inverse distances o o ol i _
il — 1%
g3(i, ) ... “angle distance metric” k=] k=2 =3

Wy ... weighting { | N AN Ja }

D(x, gi) ... broadening

Haoyan Huo and Matthias Rupp 2022 Mach. Learn.: Sci. Technol. 3 045017



Many Body Tensor Representation (MBTR)

------ NaNaNa, CICICI ,ﬁ‘
~ NaCICl, CICINa, I
" ” CINaNa, NaNaCl ! : k=3
- £ [ — NaCINa, CINaCl B
e 2 '
: i e Lr
= ®
& o
- N /\
VAR
5 vy X -
5 [\ 5
g e §
: \/
L A &
-.:_\_/\-/ \/ )
Vfy+ 2z

differentiable, continuous, fast, versatile, interpretable



Smooth Overlap of Atomic Positions (SOAP)

Smooth Overlap of Atomic Positions (SOAP) encodes regions
of atomic geometries (“atomic environments”) — C/:‘ — > {Cotm —m* P
One set of features for each atom in the system with a cutoff '

Satisfies all relevant symmetries and feature requirements pJ{r
Perfect for interatomic potentials, but can be slow to calculate

expansion in powear
local basis specirum

Density smearing with Gaussians ~ #(r) = )_exp (—a||1‘ - fi||§)fcm(|fi|)

i

Representation via radial funcs and  2(r Zc,,,,,, n (7)Y (T).
spherical harmonics nlm

Distance metric for each component of ~ Products of Clebsch-Gordan coeffs.
SOAP vector by averaging over rotations chlm () . = Z e

k(p, p') HS(/),R/))

m

zdﬁ _ Z (II ) II '_I_‘

mm’ mm' * *

1, m,m' k(p,p') = Z Cotn (Coatnr ) (Crtm) Cotyr

n, ', l,mm




Atomic Cluster Expansion (ACE) Designed for interatomic potential E- Z o

construction :
Many-body cluster expansion :
Atomic energy contributions

&=V O(2)+ 3 VO (x5) + 3 VO (i x5)
I J1<)2
woet 3 VO x) (2a) Expand each body order component in a basis

_f-]<"'<ji' Z
Vv (x5) = C( i, (%))
ky

Z;
v (x,%5,) = 3 C,Elkz)ﬁbkl (xij, )b, (%)

ky ks

V(D) (xfjl’ A ’x’jv) = Z kl 1\ ¢/\1 (xljl ) ¢kv (xiji')

Atomic basis: radial functions and spherical harmonics ok

¢znlm (rii’ Zi, Z]) = Rm’(rij: Zi, Zj) Ylm (i‘lj )5.22}-

Body/correlation order products of basis functions
znlm = Z sznm!(”z],z s i )

jeN (i) Product basis: for lexicographically ordered tuples

v
where N (i) denotes the set of indices of all atoms within the (Z, nl, m) = (Zf’ ne, Iy, my ) t=1 W€ define
cutoff radius from atom i.

znlm H Az[n,I,m, (A2)
Drautz, Phys. Rev. B 99, 014104 (2019)



Atomic Cluster Expansion (ACE)

Making basis functions rotationally invariant

(1) (1) § : (2) (2)
B“)_Ain()(h ZC B .’111?7[ m]ngl

in T
ninal (K)o (K)
ZC Bmi
(2) Knl
m]n-,! Z(_l)m m,lm insl—m» Z (’5) 0
m-_[ + n]rhm m

1112113
D 3 3 3 -
m 1Hansg ;n? 1112[3

Lilals Ll
L5 my=—Il; my=—l, m3=—Is

X Ainlhml Aingiznu Aing.f3n:3 s

Eil@)= ) > clu(ri)
i

I 2
(@) (b) ts Z Z ¢®) ¢y, (r 1) bus (7 1)
E: .T ot .4' i T .I{' I o ‘\% +/ Jij2 viv2
+ a0 Z Z i(?:'g:,v3¢lsl(rj]i )¢1)2 (rjz,-)qbvj (rj3f)

(C) JIJ)j;lﬂ.hl’

E:%+%%+%%%+...
E (0’) = Z (HAH + Z ilg,An,Aii'z

vz

V| 20203

znlm - Z qbznml(rlf’zj’ Z") + Z {:1’ v Afl’| Afl'zAf!fl e

jE.t\:r( ) Vivavr



ACE is a generalization of many possible atom-centred descriptors

ACE connects to SOAP, ACSFs (Behler), SOAPs, Steinhardt parameters

ACE correlation order 2 terms

Distance metric for each component of IR
SOAP vector by averaging over rotations k(o,0") = Z B, ni(@)B, ().

nyinsl

no__ / =  j I
k(p, p') = E Cnim (Cnlm’) (Cutm) Chrtm B 1) A
Z ( ) mllm insl—m

n,n',l,mm ingnal —
m=—I

znlm_ Z ¢znn1i(rtpzpz)
jeN(i)

¢zn1m(r;‘j, Zi, Zj) = Rnl(ﬁj,Z,’, Zj)Yf”(i'ij)c?zzj

SOAP is similar to ACE with body order 3 (correlation order 2)



Side note on features

Manually design Machine Learning
feature vectors

& &y -7 -l

Input Feature extraction Classification Output

Deep Learning

& — sz — Il

Input Feature extraction + Classification Output




Types of ML methods



Parameterization

Pattern recognition

X

Unsupervised ML
(unlabeled data)

Dimension
reduction

X

Exploratory analysis:
(leading to hypothesis)
Clustering
Dimensionality reduction

Supervised ML
(labeled data)

X

»

Regression

‘‘‘‘‘‘

X

Classification

Lf(xy)e

A ® o

Confirmatory analysis:

Deep Learning

Deep learning approaches
exist for all types of ML

(models that test ideas)

* Regression
e C(lassification



ML for chemical space exploration

Chemical Space: the final frontier




Machine learning methods in chemistry

Parametrization :
X Dimension f Regression
. A : . .
Composition reduction N Configuration
e 0o © //{f ‘,,:,\' \‘},‘l
Chemical space oo 7, o (Global exploration ,;:1\»“;';_1_-:9U Local exploration
® \ 6.

P B

Classification

! \ L f(xy)e
Pattern recognition iy o o & e %@
® v, @ \ ~ @
¢ .\\ L ll h \ .
@ \
J. Chem. Phys. 154, e %ol o e S
- >y \ >y

230903 (2021)



Unsupervised Machine Learning

Constructing a model from input data without corresponding output labels

Goal: describe or understand the structure of the data.

* Dimensionality Reduction

e Clustering

e Qutlier detection

* Generative Machine Learning

L aPat

Dimension
reduction

Clustering

>




Dimension
reduction

> <

Unsupervised ML: Dimensionality Reduction

Dimensionality Reduction is crucial for identifying the smallest 4
number of features that contain as much information as possible 8

Principal Component Analysis (PCA)

>y

Start with input vectors x and build covariance matrix Q = xTx

Covariance matrix tells us how similar each of the inputs x; are (all pairwise dot products of x;)

Diagonalize Q = W AWT

00000

Principal Component eigenvalues A = diag(44, 45, ..., 4,,)

00000

Ccv2

Biggest eigenvalues are responsible for most of the data variance

Principal Component eigenvectors W tell us how inputs x; mix = Toed W5 " B

DDDDD

vvvvv

Select a subset of L principal components and |
transform into lower dimensional space X, = Xw, :

=2200



Dimension
reduction

<

Unsupervised ML: Dimensionality Reduction

Dimensionality Reduction can help to recognize and visualize patterns in data

T-SNE: t-distributed stochastic neighbor embedding

t-SNE focuses on preserving the pairwise similarities between data points in a
Both are non-linear mappings

lower-dimensional space

UMAP: Uniform Manifold Approximation and Projection
Similar to t-SNE but uses tricks of topological data analyses to reduce comp. overhead

(e>¢‘ 1

UMAP,

@ |

(b)

PC,
t — SNE,
UMAP,

t - SNE,

PC,

t-SNE preserves small pairwise similarities whereas,
PCA maintains large pairwise distances to maximize variance.




X Clustering

Unsupervised ML: Clustering b
. ® l\\ @ \\\
Example: K-Means algorithm «  c|ysters n data points by separating them PN o
® \ 1
n , into k clusters of equal variance o %o\
Zmég(ﬂmz — 3ll°) * Requires number of clusters as input el
i=0 M

* The algorithm chooses cluster centroids that
minimize the distance to each point in the cluster

awal strucy,
W ‘I/-@

7] . » datapoints

AB INITIO = centers

STRUCTURE
SELECTION
(K-MEANS)

adaptive |
learning

TRAINING
MODELS

(MD, MDEF)

05 1.0 15 20

Stark et al. J. Phys. Chem. C 127, 24168-24182 H1-H2 distance / A



Unsupervised ML: Clustering

Partition-based clustering VS.

Find clusters of equal size

e.g. K-Means

K-Means

Density-based clustering

DBSCAN

> <

Clustering

-

Find variable size clusters around regions of high density

e.g. DBSCAN, HDBSCAN

ClusterID

-




Semi-supervised learning

»  Atraining dataset with both — labeled and unlabeled — data
» when extracting relevant features from data is difficult
» |abeling examples is a time-intensive task for experts

Examples:
»  Medical images like MRl images
»  GANs: Generative adversarial networks
— Generator (generates output)
— Discriminator (critiques output)
— Battling against each other
— Network itself provides labels




Supervised Machine Learning = _ <

Supervised ML methods

Discrete output space (classification)
DT R coninuous output space (regression)

* logistic regression * k-nearest neighbors

* naive Bayes * kernel methods

* neural networks » decision trees

Models we will discuss:

Parametric model: Non-parametric model: e Multivariate Linear Regression
Number of model Number of model * Kernel Ridge Regression
parameters are parameters depend on * Decision Trees
independent of number the number of training
of training datapoints. data points.

Model has a fixed size



Example: pKa prediction of substituted phenols based on pKa of related benzoic acid

fCx) =y 1o

: 10.5
Inputs output
(features)

TABLE 1 pK, of some substituted benzoic acids in water at 25°C [3], and the
corresponding substituted phenols in 20% water-ethanol (v/v) at 20°C [4].

phenol pK,
S
o

Substituent Substituted benzoic acids Substituted phenols v=5.167 + 1.177x, R*=0.734

H 4.200 10.30 9.5

m-NH, 4360 10.37 o

p-NH, 4.860 10.90 90 ; . \

p-N(CHs), 5.030 10.61 3.9 4.0 4.5 5.0 5.5
m-OCH; 4.085 10.09 bezoic acid pK,

p-OCH; 4.468 10.55

ok i i Hammett equation
m-Cl 3.827 9.35

p-Cl 3.973 9.76

o] (o)
m-CH 4.269 10.49 R‘Q% 25°C R@_{
+ HO0 P/ + H30*
.. . OH O
Training data: 10 data points R

R



X Regression

Multivariate Linear Regression y oL
e
Linear fit in high dimensional space Y
Find a set of regression coefficients 8 :&f(x )
Important that input data x; is represented in a way ’y,y

that shows close to linear relationship with y;
Many ways to fit a large set of parameters

Not a universal estimator so NOT ML

Example: Fit H, dissociation curve, E(R)

E(R;a,b) =AaR +b

- E=00325R— 11254 3

Linear in R
Bad fit '._’ E=-0.2962R

fx8) =) Bjz; =x"p
j=i1

p
E(R;a,b,c) = Z,qubj(R) =aR®+ bR ! +¢

i RA
0 1 % 3 4 5

-0.95

-1.00 /,_,._.

E = —0.03R™% + 0.00045R~*? — 1.02060806

E, Hartree
P
a

-
-
o

Linear in {R~%, R~1?} space
Somewhat better fit

-
-
($)]




Molecule num_atoms num_carbons num_hydrogens

H20
HCN
co2
NH3

C2H2

CH4

3

a A A W W

0

1
1
0
2
1

=

w

[
Number of hydrogens

B N W o = N

Kernel methods
* based on similarity measure in high-dimensional space
1 ]

e Extends linear fits to general non-linear models

In this example, the kernel
is a simple dot product g
(cosine similarity)

€co, " €H,0 =

09058 0.759

0.759 [Gi8048 0.781

H;O0 HCN  CO;

NH3

CzHz

CH,

10

094

Kernel-based
algorithms

| }

. I Dimensionality .
[ Regression ] [ Classification J [ el ction J[ Clustering ]

* Barisl Rldge * Kernel Discriminant Analysis * K-
Regression * Spectral
. * Kernel Principal clustering
* Support Vector Machine (SVM
PP, ( ) Component * kernel self-
Analysis (KPCA) organizing map

* Gaussian Process (GP)
« Kernel Canonical

Correlation

+ Kernel logistic Analysis (KCCA)

regression

oS8 Kernels measure similarities (“distances”)

Examples of types of Kernels

Linear kernel k(xi, %) = (x5, %)

(dot product)
ﬁ Gaussian L -
kernel k(xi,x') = exp (—ﬁ Z(Cﬁu‘ - %)“)
J



X Regression

A
Kernel Ridge Regression o
208
Step 1: :
Start from linear regression Z Bjz; =x" ,, f(xrj;)y
Step 2: \
Expand coeffs. in high-dimensional space N N
spanned by training data Bj = Z a;r;; — f(x) = Z o (X;,X')
i=1 i=1
Step 3: /
Do the same in space of nonlinear basis functions {¢} Dot product measures similarity
- between data point x;
F($(x)) = Z ik (x:, X) and point of prediction x’

If  k(xi,x') = (xi,x)
then we are back to linear regression but in

training data space that can be expanded
-> Universal approximator

This is called the “kernel trick”
Many different kernels/basis functions:
Gaussian, Laplacian, polynomial, ...




Example: Fit H, dissociation curve, E(R) with Kernel Ridge Regression (KRR)

1 < 2\ . : .
Gaussian kernel k(x;,x") = exp ~52 Z (x,-]- — l",-) Gaussian KRR puts Gaussian
basis function with width o on

~ A each data point and multiplies it

005 ° 1 2 3 4 5 with coefficient a;.”

We fit coefficients «;
(least squares fit)

-1.00 -

-1.05
This is now a universal ML method.
There is a risk of overfitting so we
require regularization during fitting
(fitting along the “Ridge” of solutions
where coefficients remain as small as
-1.20 possible)

E, Hartree

-1.10




Root node ——,

Is there a swell?

Decision Trees

v Non-parametric supervised learning methods for f _ “

classification and regression A
Simple to understand and to visualize 7
Can handle numerical and categorical data
Predictions are non-smooth

Large trees can be unstable -> overfitting

) Internal node
Tackle via ensembles of trees -> Random Forests suf urf
- S = Leaf node

Surf

vV o o0 X X

Start with dataset of (X, Y) where Y is the label (surf,don’t surf) and X is a set of attributes
"\
swell (Y/N),
wind (numerical)
Wind direction (onshore/offshore)

Internal nodes represent attribute tests,
Branches represent attribute values
Leaf nodes represent final decisions or predictions

First find good attributes X -> Finding good feature representations

How are trees built? -> Information Gain or Gini Index



Decision Trees - Classification

How are trees built? -> identify attribute tests that maximize Information Gain or minimize Gini Index

Gini Index: measures how often a randomly chosen data point would be incorrectly identified by a
certain attribute test.
Attributes with lower Gini indices are preferred as they better split the data

n
Gini =1 — z p? p? probability of a certain outcome i
—

l

All Data

Ensembles of trees provide improved generalizability and robustness B
* Gradient-boosted trees (e.g. XGBoost) Tree Tree Tree

e Random forests é ’
LR 2
R



Reinforcement Learning

e Agent performs certain actions in an environment at each time step in a

sequential decision-making framework
 Actions change the state and can provide positive or negative feedback -> goal
is to learn a policy that provides maximum reward

. Uses rewards instead of labels to learn

0'©-©O 6'0-@

 Temporal Credit Assignment Problem: associating a reward with an action
* Finding Trade-off between Exploitation vs. Exploration Examples

»  Video games
»  Training robots
»  AlphaGo



Markov process

Sequence of states 51,552,583, ..., St -

Transition probability t—->t+1

Pr(sts+1lst)

Markov reward process

Sequence of rewards 711,72,73, <., Tt oo

(0 0)
_ k
return G; = z Y g1+
k=0

Markov decision process

Seqguence of states and actions

Actions affect transition probability

Actions affect reward probability

Policy: m[als]

discount factor y* € (0,1]

Agent performs actions a;

S1,A1,S82,0Q9,S3,A3, ..., St, A¢, ...

Pr(s¢s+1lse at)

Pr(rsqlse at)

Reward State
I S

Agent
Policy w[a¢|s;]

Environment
State transition

Pr{siz|s¢.a;)
Reward function
Prire.1ls:,a¢)

State Action

determines the action, stochastic or deterministic, stationary or time-dependent



Assign value functions to states, and actions to determine optimal reward G,

State value function v[s¢|m] Expected return for being in state t

Action value function q[se ag|m] Expected return for executing action in state t

If we know the optimal action values, we can derive the optimal policy m[a;|s;]

vlse) = Z mlai|si]q[se, ai

at

qlse, ar] = rlse,ae] + v Y Pr(sepalse, ar)v[se]

St+41

v

Bellman equations to
define optimal policy

Types of RL

* Tabular reinforcement learning (methods that don’t rely on function approximation/ML)
Fitted Q-learning (action value function replaced by machine learning model)

Policy gradient methods (directly learn a stochastic policy m[a;|s;])
* and many more...



Putting it all together



O 0 N O Uk W e

Typical workflow in ML project

Define the task and the objective (informing the loss func. and data gen.)
Generate and clean the data (e.g. find patterns, find outliers) Clustering

, _ _ o _ _ Classification
Discover and visualize the data to gain insights (find correlations)
Prepare data for training (e.g. train/test split, scaling) Dimensionality Reduction
Find good data representation: “Featurization”
Select, train, and evaluate model (e.g. calculate MAE, RMSE) ©-8- Classification

.. : : C e or Regression

Optimise and fine-tune model with cross-validation

Assess accuracy and uncertainty of trained model

Generate more data to improve accuracy/uncertainty (e.g. active learning)

10. When ready, deploy model (E££ and/or manuscript) Clustering



split performance=sp find parameters

Splits 7 N~ ~ £ ~
1 Fold1 || Fold2 || Fold3 || Fold4 | Fold 5
2 Fold1 || Fold2 || Fold3 || Fold4 || Fold 5
3 Fold1 || Fold2 || Fold3 || Fold4 | Fold 5
4 Fold1 || Fold2 || Fold3 || Fold4 || Fold 5
5 Fold1 || Fold2 || Fold3 || Fold4 || Fold 5

K-foldCV

Validating your model: K-fold Cross Validation

training / validation data

test data

Y

final evaluation
—» sp, \
—» sp,
—» sp, } average performance

> sp, best avrg. performance

=> optimal hyperparams

—Psp5J

used for model validation (calculate accuracy and standard deviation of prediction)
used for Hyperparameter optimisation (Grid search, Random search)

Avoids overfitting
Can help to identify outliers and unbalanced datasets



Uncertainty Quantification

Accuracy of prediction: MAE or RMSE

2 Sources of uncertainty in prediction:

* Aleatoric uncertainty (statistical error, noise in data)
e Epistemic uncertainty (intrinsic to model)

How to calculate uncertainty / standard deviation?

Bootstrapping
(e.g. subsampling)

Validation Training
Fold Fold

W, \ _
1st LJ | | l |—b Performance ,

©»
% 2ndl |:| | I |~—I- Performance 2
&
-
o 3rd | | | | — Performance 3
]
o
o 4th | I I I:I I—p Performance 4
x

5th | | I | I |—b Performance 5

Low accuracy
Low precision

High accuracy
Low precision

Low accuracy
High precision

High accurac y
High precision

oo}

Ensemble Learning
(stacking, bagging, boosting) (e.g. Gaussian Process Regression)

Mean

StDev

|

e.g.

Random
Ensembles
Same data,
Same model,
different random seed

Bayesian Uncertainty

Prediction with uncertainty




Challenges in Machine Learning

Challenge

Insufficient quantity of training data

Nonrepresentative training data (Bias)

Poor-Quality data (Noise)

v

Irrelevant Features

\ 4

v

Overfitting

Techniques to address

Adaptive/Active Learning
Uncertainty Quantification
Feature Engineering/Selection

Hyperparameter Optimisation



Research Example: Generative molecular design

Westermayr, Maurer, Chem. Sci. 12, 10755 (2021)

Westermayr et al., Nature Computational Science 3, 139-148 (2023)
Koczor-Benda et al, arXiv: 2503.14748

Koczor-Benda et al., arXiv: 2503.21328



Example: Designing molecules with tailormade properties?

/ ’ “Artificial molecular forge”

predict
propertles

\ d ‘ Semi-transparent Cathode
M Conductive Layers

tra|n Create

\N (Electron Transport)
——— Emissive Layer
- - (Blend of host and dopant materials)

< w Conductive Layers
JL - (Hole Transport)
— \ Anode

——— Substrate
(Rigid or Flexible)
—_—
generative ML tailormade molecule

\. Organic Light Emitting
Diodes (OLEDs)

l v improve database

\
tl'ﬁ

Application:
Generative molecular design
of organic electronics

Hu\-i-lp_.—

Eneréy

IP ... lonization potential
EA ... Electron affinity
HL ... HOMO-LUMO gap

Nature Computational Science 3, 139-148 (2023)



Generative Design of Molecules with Tailored Properties

Duplicate?

Molecules
with Tailored
Properties

Nature Computational Science 3, 139-148 (2023)



Generative deep learning of 3D molecular structures

Autoregressive atom-by-atom GSchnet

i Geometric diffusion models
construction of molecules

Atomic Space Latent Space

1. Atom-wise features 2. Determine next type 3. Distance probabilities 4. Sample position Diffusion Process T
origin
et s 0”8 yprniched 8% 'Y Ew
foreis .". molecule all types + stop sample new type calculate grid: cg g o ‘B{ ®
. @ ® @ ¢ loken = n&a.f & s';" o
positions atom types (H, C, N, O, F, STOP) Zi:® plresil-) = = T pldeaslx) Te ¢ - °
=1

¥
J

(T ooy Tagio1) (Z15 ey Dpgi1) l. l.

Wl embedding 128 ‘ ------- | embedding 128 | e \
I ><§ (Xl--mxur—l)""—b@ ...

»—‘ interact.ion 128 ‘ l dense.6x128 | | dens:e128 l l

T.earned Denoising Process €g

' ' '
sample new position 74

:»—{ interact.ion 128 ‘ | dens.e 6x1 | [ dens.e 300 |
—1 interactlion 128 ‘ | Softrrl1ax 6 | ‘ Softmlax 300 | :_.
! ' '

repeat from 1. until stop has

(X1, s Kegic1) = P(Zeailxy) ¥ <t+i  PldeiX) Vi <t+i  peen predicted for each atom
t+i—-1
Interaction blocks equivalent 7 _1 7 03 os
P Ztsil.) = P Zeiilx;)
to SchNet [14] using it 8 E il : S -

continuous-filter convolutions: 10

o 1 2 3 uﬂn 1 2 H
. 0.5 o P ®
/ o ot p
o ‘1 Final molecule
J 1

0.0 0o 6w —t—

H [of N o F STOP ] 1 2 ] 1 2 3 N

Model trained
by MChem student
Abudalla Al-Fekaiki

GeolLDM model:
Xu et al. ICML (2023)

G-SchNet model: N. Gebauer et al. NeurlPS 32 (2019)



Generative deep learning of 3D molecular structures 7

Generated structures

trained on A
= 100.
OE62 database £ e ra
@
80 reproduce
3 :
£ ' elemental
m . . .
£ o4 distribution
=
3
o 1
HL BCNOTFSiPSClAsSeBrTe |
C mem AE mmm P mmm EA G-SchNet
Ja) ] AE  — 1 EA QE62
g 20k{, Hi
o a4’ reproduce
- 1K property
5 10k . . .
é . distribution
2 ’
-—_a__\__* o
0

215 -10 -5
Energy [eV]

Nature Computational Science 3, 139-148 (2023)



Bias in generated molecules!

Training Molecules

Generated Molecules

m
o al
1 1

Bonding PC1 (79.9%)
N
rh

14

Koczor-Benda et al.,

T
2.5

Structural PC1 (66 7%)

rm:zr

T
5.0

T
—2.5

L}
0.0

T
2.5

Model misses out on saturated/aliphatic structures

arXiv: 2503.21328



Generative Design of Molecules with Tailored Properties

m— OE62 :
= AE bias 1 e
—— AE bias 2 "
=== AFE bias 3
=== AE bias 4
AE bias 5
AE bias 6
AE bias 7

0 OE62

o 2.5 5.0 75 10.0 Principal component 1
Energy (eV)

Molecules
with Tailored
Properties

Nature Computational Science 3, 139-148 (2023)

Z Wusuodwoo jediould



Small Fundamental Gap (AE)

High Electron Affinity (EA)

Low lonisation Potential (IP)

1T

5.0 7.6
Energy [eV]

OE62

AE bias 1
AE bias 2
AE bias 3
AE bias 4
AE bias 5
AE bias 6
AE bias 7

OE62 A
EA bias 1 *
EA bias 2
EA bias 3
EA bias 4
EA bias 5
EA bias 6
EA bias 7
EA bias 8
EA bias 9

ARRRREE

2 0 2 4 6
Energy [eV]

OE62

IP bias 1
IP bias 2
IP bias 3
IP bias 4
IP bias 5
IP bias 6
IP bias 7
IP bias 8
IP bias 9
IP bias 10
IP bias 11

S,

ERRRREEE

6 8 10 12
Energy [eV]

81



Density

Bonding Descriptor Trends
Small Fundamental Gap (AE) Biasing

OE62

AE bias 1
AE bias 2
AE bias 3
AE bias 4
AE bias 5
AE bias 6
AE bias 7

1.0 1.5
C-N bond length [A]

2.0

uu OO N
o o O O

% Element content compared to C
= N w iy
o o o o

o

Initial G-Schnet
AE bias 1
AE bias 2
AE bias 3
AE bias 4
AE bias 5
AE bias 6
AE bias 7

AE [eV]

0 20 40 60 0 10 20 O
% S % N

5 10 15
% Se




Synthetic Viability

TR A B |

b}
OxrMoow
“-=—@TMmoO
C
\
O

OOmMmo O >
+ + + 4+ 4+

o—~_ * High selenium content leads
O‘O to molecules that are difficult
b to synthesise.
a * We quantify this with the
éjb/o SCScore metric.!

ci1 2 348

® 000Q

0060 @

SCScore: Coley et al, J. Chem. Inform. Model. 58, 252-261 (2018)

Density

- AE bias 4

OE62

AE bias 1
AE bias 2
AE bias 3

AE bias 5
AE bias 6
AE bias 7

Complexity of synthesizability




Generative Design of Molecules with Multi-Property Optimisation

Combine electronic screening and
synthetic complexity screening

Electronic Synthetic Other

Property Complexity Property
NN

NN Prediciton
-H |

Density

Gschnet

Retrain

[

Molecules
with Tailored
Properties

Nature Computational Science 3, 139-148 (2023)

a

> b

. | l

N

Density

Fr. = QE62+G-SchNet

= AE + synth. bias 1
= AE + synth. bias 2
=== AE + synth. bias 3
== AE + synth. bias 4
= AE + synth. bias 5
ww= AE + synth. bias 6
AE + synth. bias 7
AE + synth. bias 8
AE + synth. bias 9

5 c
o\sf/
\
\ s
7o
o

1 2 3 4 5
Complexity of Synthesizability




Interpreting the Data

Latent “Chemical Space” Maps with Principal Component Analysis

ial (IP)

Potent

ion

Isat

Low lon

ity (EA)

in

High Electron Aff

Small Fundamental Gap (AE)

OE62

o

OE62

o]

OE62

o}

Z Jusauodwo) |edidulld

| Component 1

incipa

Pr

| Component 1

incipa

Pr

| Component 1

incipa

Pr

//github.com/maurergroup/gschnettools

https



Interpreting the Data: Clustering

Structural pc

BOnd,-ng PL_

(@]
S
w

B Unbiased

4 { W lteration 1
Iteration 2
Iteration 3

Iteration 4
I [teration 5
I |teration 6

% Contribution to Iteration

al Q a3 ca cs
Koczor-Benda et al, arXiv: 2503.14748



Thank you!

Go and use ML methods for your research!
BUT PLEASE

* Remember: learning #+ understanding
 Embrace reproducibility (clear workflows, write tutorials)
 Embrace openness (publish your models, data & scripts!)



