

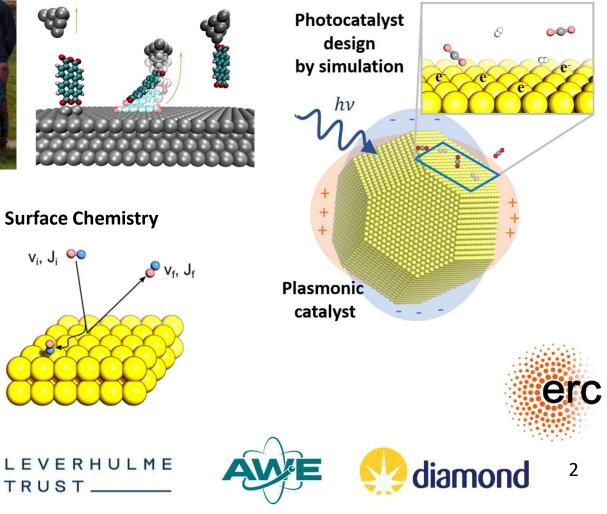
Introduction to Machine Learning

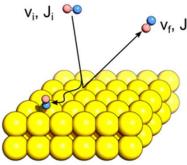
Reinhard J. Maurer Department of Chemistry & Department of Physics, University of Warwick

www.warwick.ac.uk/maurergroup

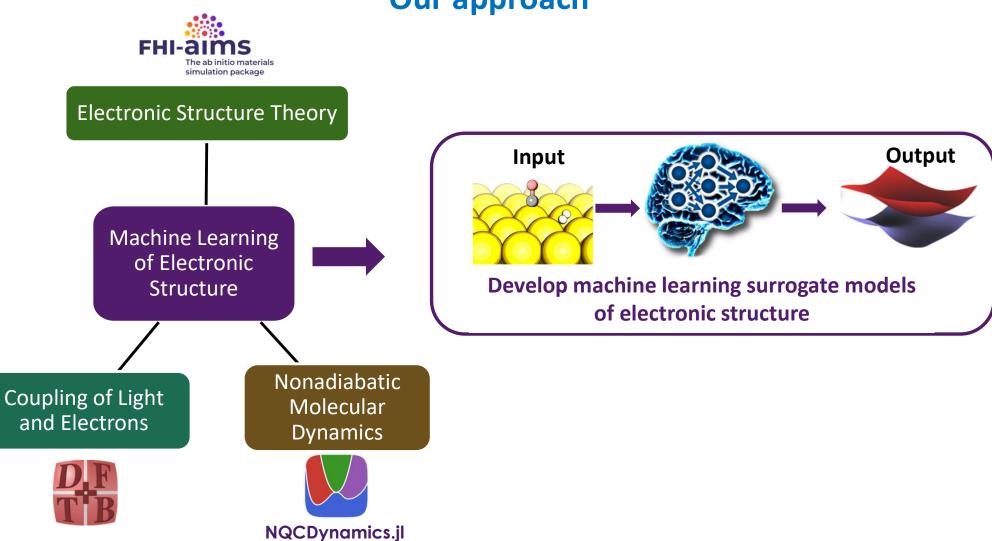
Computational Surface Science

Metastable nanostructures

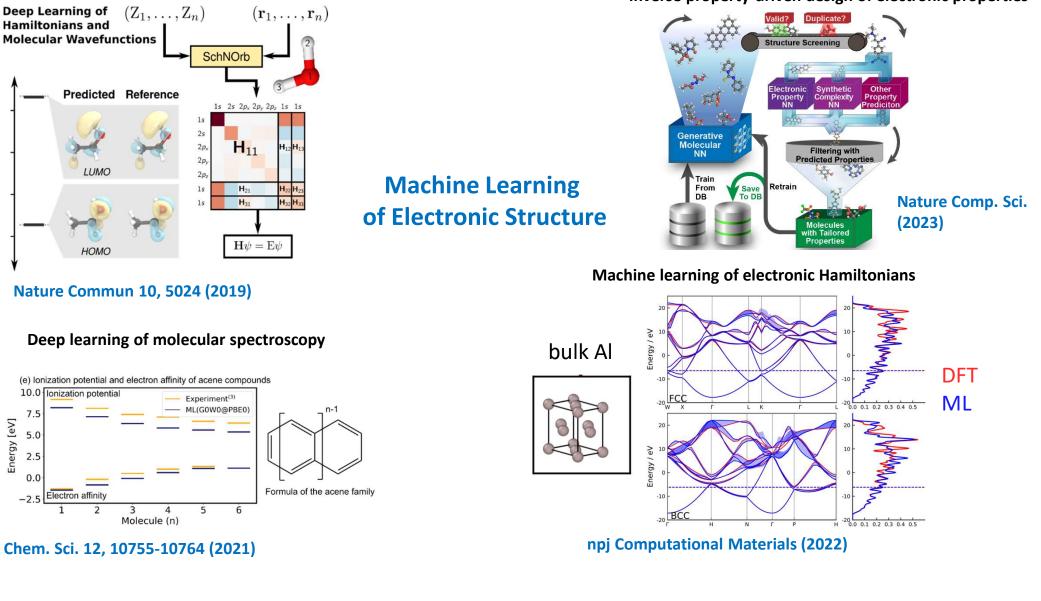




LEVERHULME TRUST____



Our approach



Inverse property-driven design of electronic properties

Goal of this lecture

After this lecture (and accompanying workshop), you should ideally

- 1. Know the **role of machine learning** in the computational physical sciences
- 2. Understand the **basic terminology** of machine learning ("Slang busting")
- 3. Have an **overview of methodologies** and how they connect
- 4. Understand how to approach a typical machine learning workflow
- 5. Know how to **prepare and analyse datasets**
- 6. Be able to validate and optimise models with **cross-validation**
- 7. Know basic approaches to **featurisation and representation** in chemistry
- 8. Know how to evaluate and assess prediction errors and uncertainties

Resources

<section-header>

The Internet

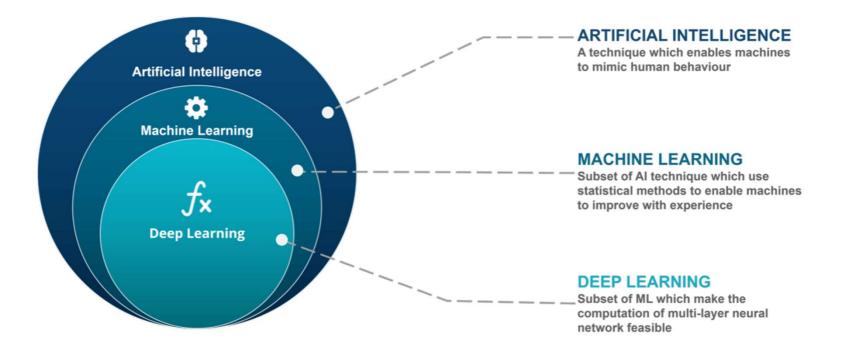
Perspective on integrating machine learning into computational chemistry and materials science

Cite as: J. Chem. Phys. 154, 230903 (2021); doi: 10.1063/5.0047760

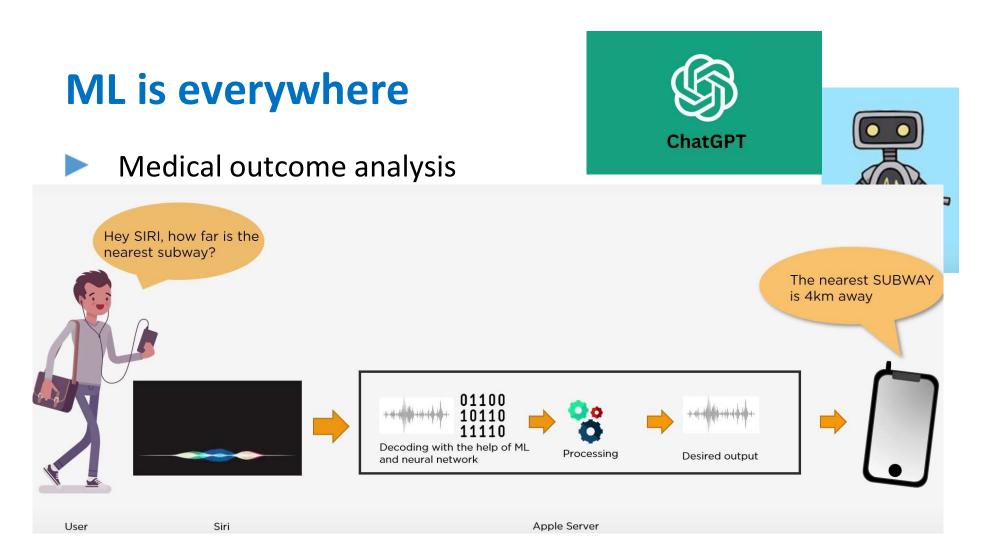
Agenda

- 1. What is ML?
- 2. Basic Definitions
- 3. Data Representations and Features / Descriptors
- 4. Types of ML methods
- 5. Putting it all together
- 6. A research example

What is ML and how can it be useful?

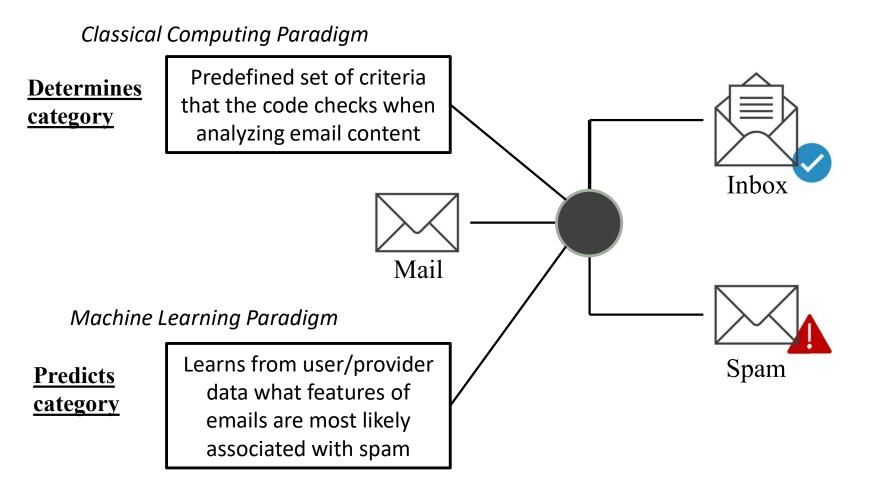


Machine Learning is the field of study that gives the computer the ability to learn without being explicitly programmed. Arthur Samuel Learning from Data



Commonly used in Chemistry and Materials Science research

The ML paradigm and your email spam filter



Challenges in Chemistry & Materials Science

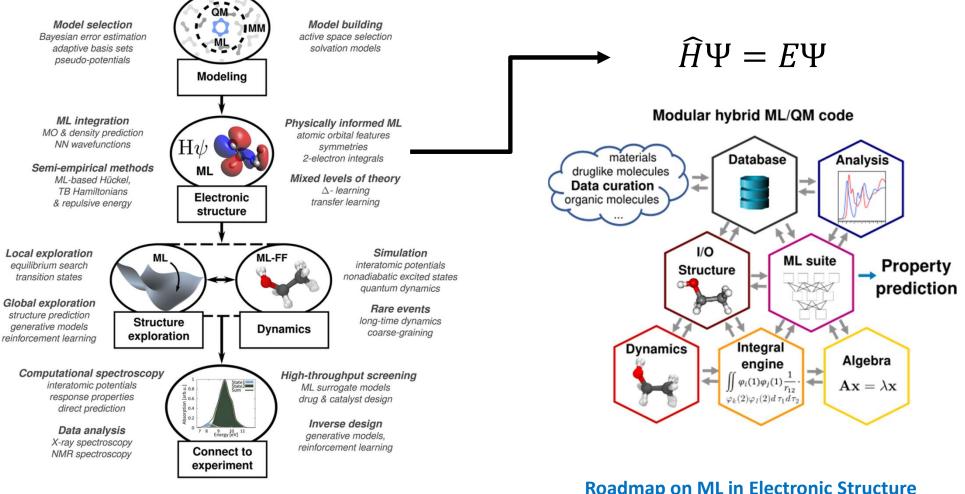
Chemical compound space is Accurate Quantum Chemistry is slow bigger than the known universe Fast Quantum Chemistry is inaccurate **D)** Categories oligosaccharides DNA Interatomic potentials computational cost ACS Chem. Neurosci. (no explicit electrons) peptides 9,649-657 (2012) >100nm and µs-s diamondoids Semi-empirical/ Ro3 tight-binding methods <100nm and ps-µs graphenes (Semi-local) Density Functional Theory (DFT) <10nm and fs-ps nAChR ligands alkanes Many Body Perturbation Theory and Quant. Chem. <nm and ~fs 10^{180} possible molecules 10^{80} atoms in universe time/length scale 10^8 known molecules **Machine Learning**

can help!

Accelerate property prediction

Accelerate materials design

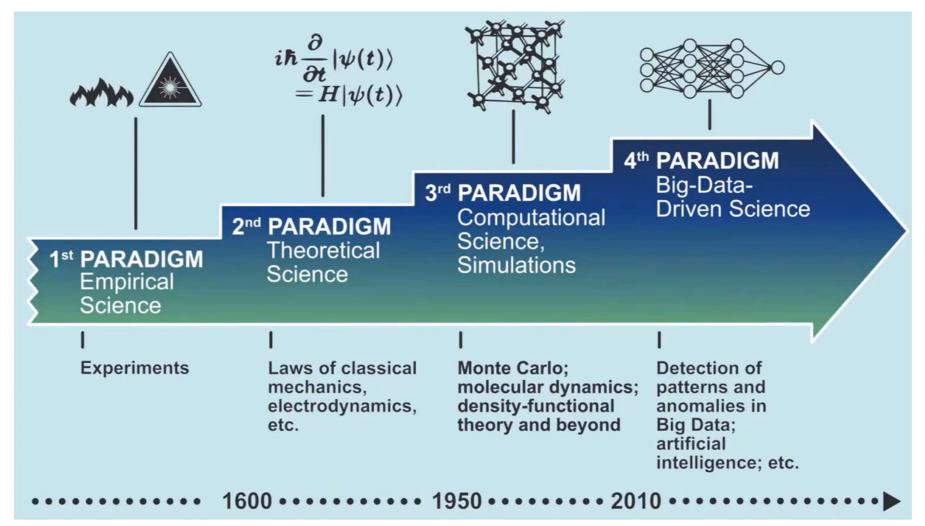
Why should you use ML in your research?



Perspective: J. Chem. Phys. 154, 230903 (2021)

Roadmap on ML in Electronic Structure IOP Electronic Structure (2022)

The 4th paradigm of science



"Scientific" Machine Learning (SciML)

1. Machine Learning (ML) is an area of Artificial Intelligence (AI) that fits mathematical models to observed data. ML is often applied as a black box, which can limit model transferability.

2. Scientific Computing uses large scale modelling of bottom-up 'real' physics/chemistry, typically through numerical solution of differential equations. This is accurate and predictive, but often very computationally expensive.

Scientific Machine Learning (SciML) combines the strengths of the two approaches.

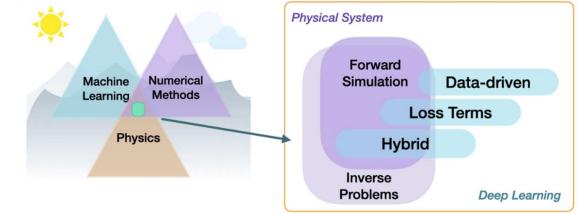
physical laws + data-driven machine learning methods

domain expertise human-interpretable

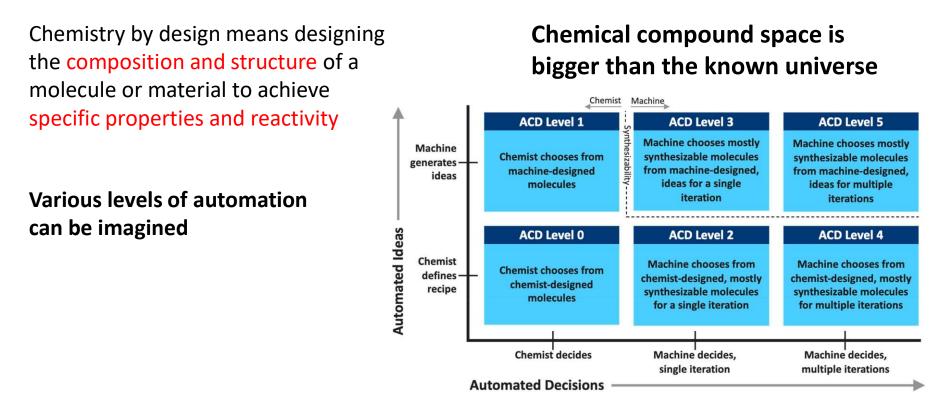
physics-informed neural networks

limited quality data labels

symmetries and conservation laws



Automated Chemistry by Design (ACD) in Molecular Discovery

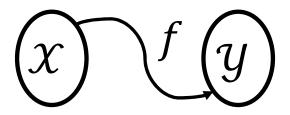


How are new ideas generated? How are decisions made?

Goldman et al., J. Med. Chem. 65, 10, 7073-7087 (2022)

Basic Definitions

ML Definitions



ML is concerned with algorithms that improve with increasing amount of available data under some performance measure.

Find a predictive function that connects input space ${\mathcal X}$ to a target space ${\mathcal Y}$

$$f\colon \mathcal{X} \to \mathcal{Y}$$

ML focuses on **universal approximators**, able to represent any function with arbitrary accuracy, when given enough training data and parameters.

The functional relationship to be found is specified by choosing a suitable loss function $\ell(f(x), y)$.

If the loss function requires knowledge of targets (labels) $y \in \mathcal{Y}$, we speak of **supervised learning.**

How it works

Training Dataset data that model sees to learn

- 1. Provide a training dataset, T
- 2. The machine is **trained** to capture statistical trends in *T* and suggests a function *f*
- 3. Ideally, $f(x_i) = y_i$ for all values
- 4. Then, given new (unseen) x' values, the model should **predict** f(x') = y'
- 5. We can validate how much the model has learned with a **test set** of data for which the ground truth is known

Test/Validation Dataset

Data that is unseen to assess learning. Generate by splitting off some data (~20%)

We train a model by minimising risk

The optimal model minimizes the expected risk, R(f), defined as the **expectation value** of $\ell(f(\mathcal{X}), \mathcal{Y})$:

$$R(f) = \langle \ell(f(\mathcal{X}), \mathcal{Y}) \rangle = \int \ell(f(\mathcal{X}), \mathcal{Y}) \, \mathrm{d}\mathcal{P}(\mathcal{X}, \mathcal{Y})$$

We typically don't know the underlying data distribution $\mathcal{P}(\mathcal{X}, \mathcal{Y})$ so we use the **empirical risk** instead, which is the expectation over a finite data set T:

$$R_{\text{emp}}(f) = \frac{1}{n} \sum_{i=1}^{n \in T} \ell(f(x_i), y_i)$$

The ML training process is the process of minimizing R_{emp} or the loss.

Different types of loss functions

Different ways to measure distances between the ground truth and the model prediction f by a single number.

L1-norm
$$J(f) = \sum_{i}^{n} |f_i(x_i) - y_i|$$

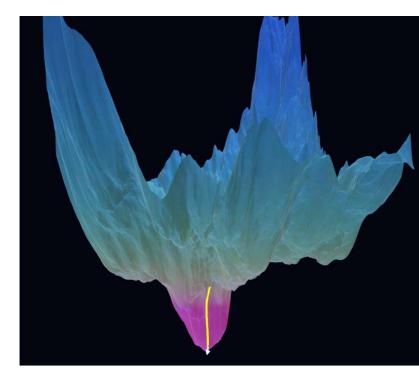
Least absolute deviations

L2-norm
$$J(f) = \sum_{i}^{n} (f_i(x_i) - y_i)^2$$
 Least square regression

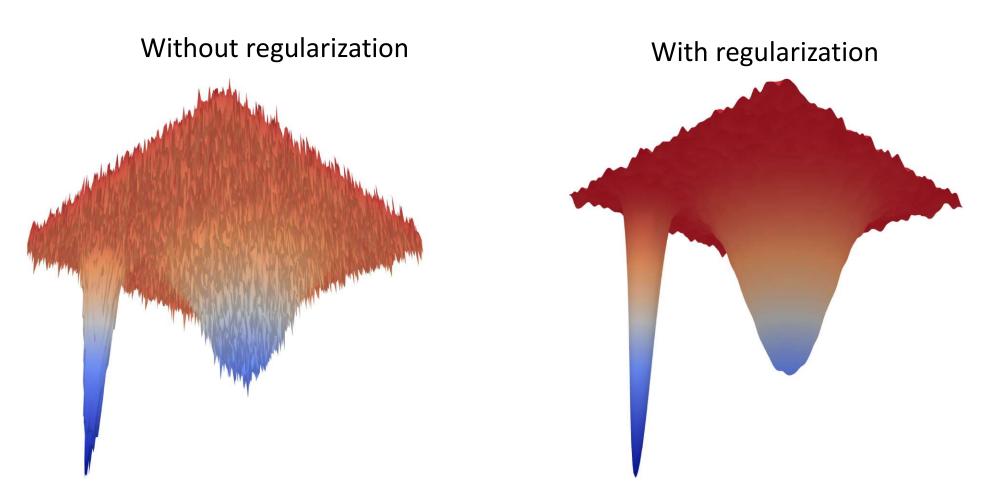
L1 norm more robust against outliers, but more difficult to optimize

Training and Overfitting

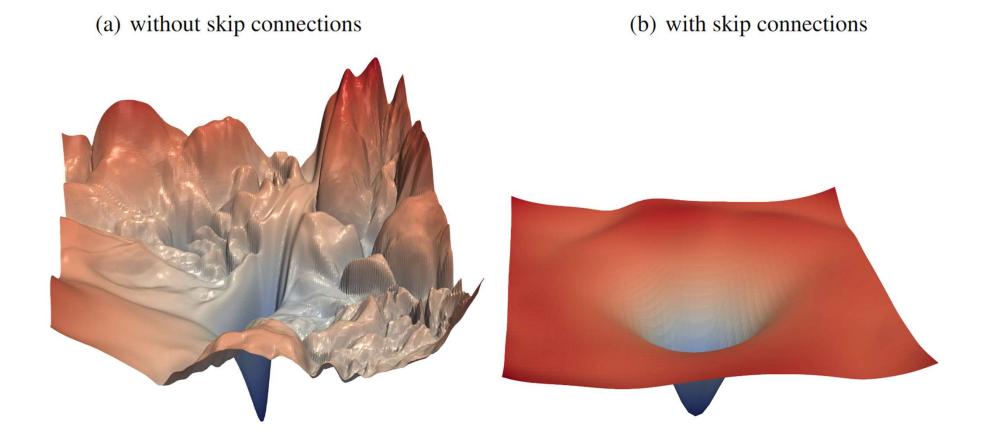
- Unfortunately, $f(x_i) = y_i$ does not hold and there is an error
- Many functions can map $\mathcal{X} o \mathcal{Y}$
- Let F be the set of functions that map $\mathcal{X} o \mathcal{Y}$
- The accuracy of any $f \in F$ is determined by the loss function $\ell(f(X), \mathcal{Y})$
- Training is the process of minimizing the loss e.g. through (stochastic) gradient descent
- Since the set F is large, we introduce regularizer terms to the optimization problem, which punish complex solutions that lead to overfitting



Loss landscape https://losslandscape.com/explorer

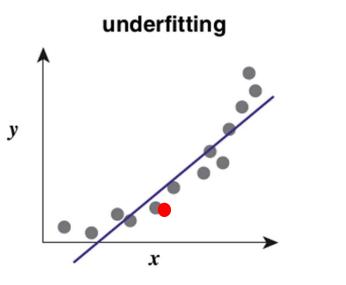


Overfitting yields an increased error on unseen data by approximating a simple functional relationship with an overly complex function on the training set



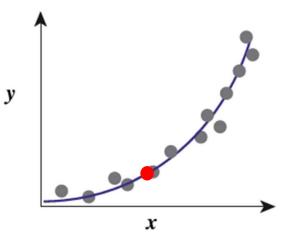
arXiv:1712.09913

ResNet-56 with and without skip connections



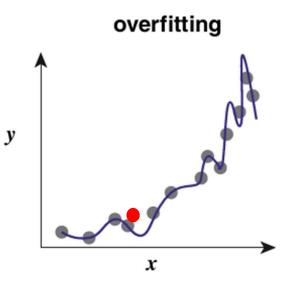
training error: high validation error: high

Model is not sufficiently complex and flexible to capture data appropriate fitting



training error: low validation error: low

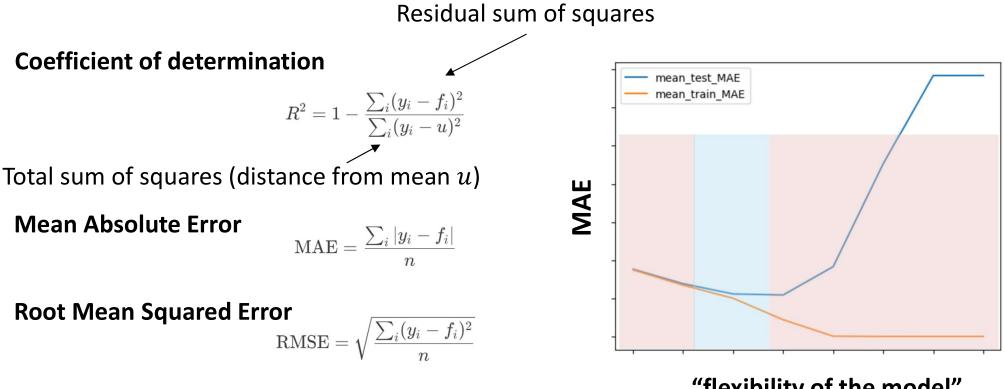
Model is suitably complex to capture trends in data



training error: low validation error: high

Model is <u>overly</u> complex and will likely not generalize to other samples

How do we quantify the performance of a model?

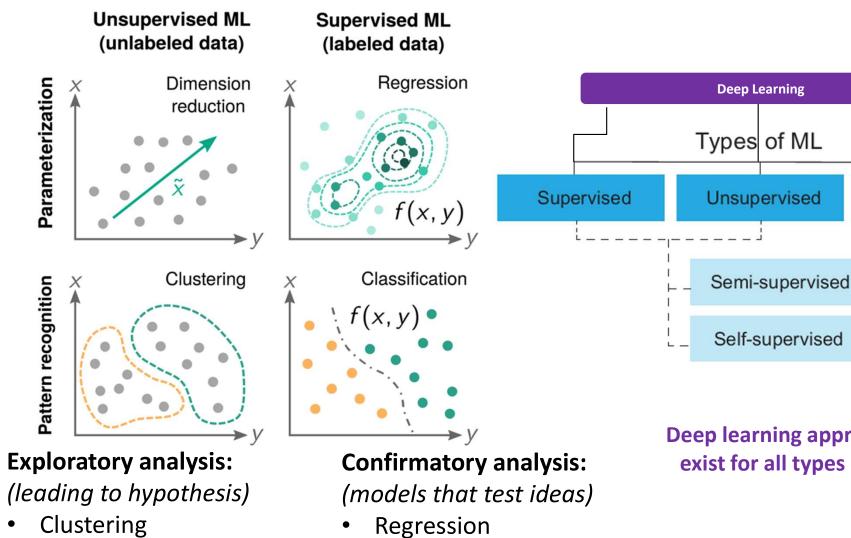


"flexibility of the model" (e.g. number of parameters)

 y_i ... ground truth label for data point i f_i ... model prediction for data point i

Try to achieve lowest possible test set error

Types of ML methods



- **Dimensionality reduction**
- Classification ۲

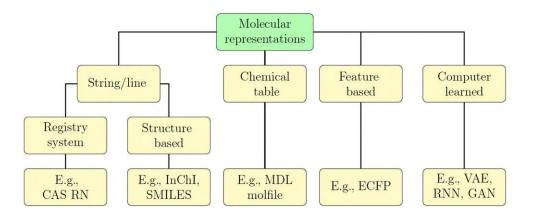
Deep learning approaches exist for all types of ML

Reinforcement

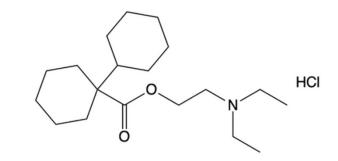
Data Representation and Features

What is the input x in y = f(x)?

Examples of Molecular Data Representations



• Lewis structures (2D graph)



• String representations

Generic names ⁵	Dicycloverine HCl, benacol, bentyl, dibent, Dyspas, and so on
Mol. formula	$\mathrm{C}_{19}\mathrm{H}_{36}\mathrm{ClNO}_2$
IUPAC name	2-(Diethylamino)ethyl 1-cyclohexylcyclohexane-1-carboxylate hydrochloride
CAS RN	67 - 92 - 5
Canonical SMILES	CCN(CC)CCOC(=O)C1(CCCCC1)C2CCCC2.Cl
InChl	InChI = 1S/C19H35NO2.ClH/c1-3-20(4-2)15-16-22-18(21)19
	(13-9-6-10-14-19)17-11-7-5-8-12-17;/h17H,3-16H2,1-2H3;1H
	InChIKey:GUBNMFJOJGDCEL-UHFFFAOYSA-N
WLN ⁶	L6TJA-AL6TJAVO2N2&2&GH

Registry systems

Chemical Abstract Services Registry Number PubChem CID ChemSpider ChEMBL

WIREs Comput Mol Sci. 2022; 12:e1603

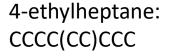
SMILES

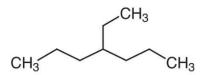
Simplified Molecular Input Line Entry System String of ASCII characters that defines a molecule

- Atoms are represented with their chemical symbol
- Single bonds are implicit or (-), double bonds (=), triple bonds (#)
- Rings represented via a number after the initial atom and closing atom (e..g C1CCNCC1)
- Branching: represented with parentheses around the branch
- Aromaticity: aromatically bonded atoms in lower case or alternating -C=C-

C1ccccc1, C1=C-C=C-C=C1, C1=CC=CC=C1

- Hard to represent unsaturated bonds, radicals, or unusual valences/bonding
- No info on molecular conformation
- Not well suited for generative models





DeepSMILES SELFIES (self-referencing embedded strings)

Extended Connectivity Fingerprints, ECFP (a.k.a. Morgan or Circular Fingerprints)

Based on molecular graphs Interpretable in terms of local atom groups

Subgraphs are generated for each atom at each radius and a unique identifier is created with a hash function

import hash from 'crc-32'; const feature = [1, 2, 3, 4]; const identifier = hash.buf(feature); // -1237517363

2. Iterative updating

3. Duplicate identifier

4. Forming the bit array

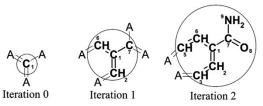
removal stage

stage (Morgan algorithm

Initial assignment stage 1.

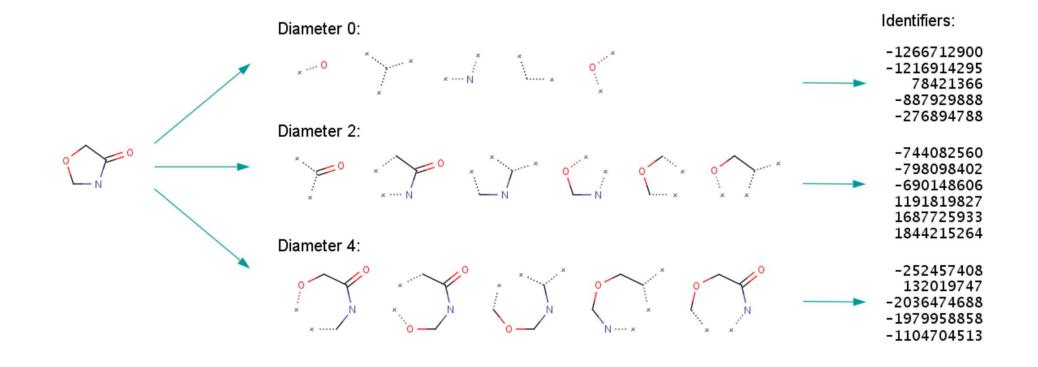
- 1: -4080868480043360372 8311098529014133067 8311098529014133067 -2155244659601281804
- -3602994677767288312
- 8573586092015465947

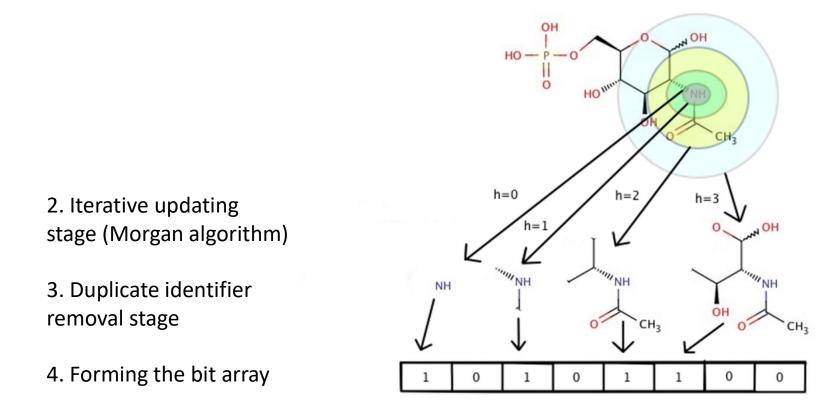
Considering atom 1 in benzoic acid amide



Implemented in **RDKit**

2. Iterative updating stage (Morgan algorithm)



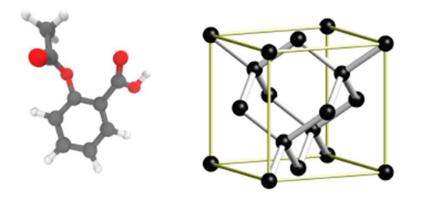


Many more descriptors from cheminformatics (e.g. SMILES Cliques, molecular fingerprints) But the typically don't have "atomic resolution"

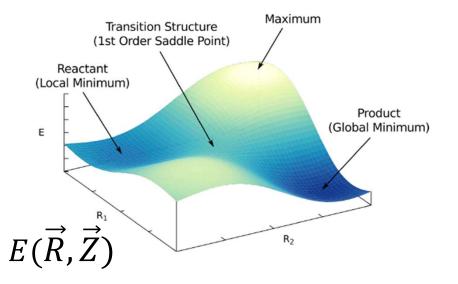
Data Representation / Featurization for Molecules & Materials

 $\widehat{H}\Psi = E\Psi$

Molecules & Materials



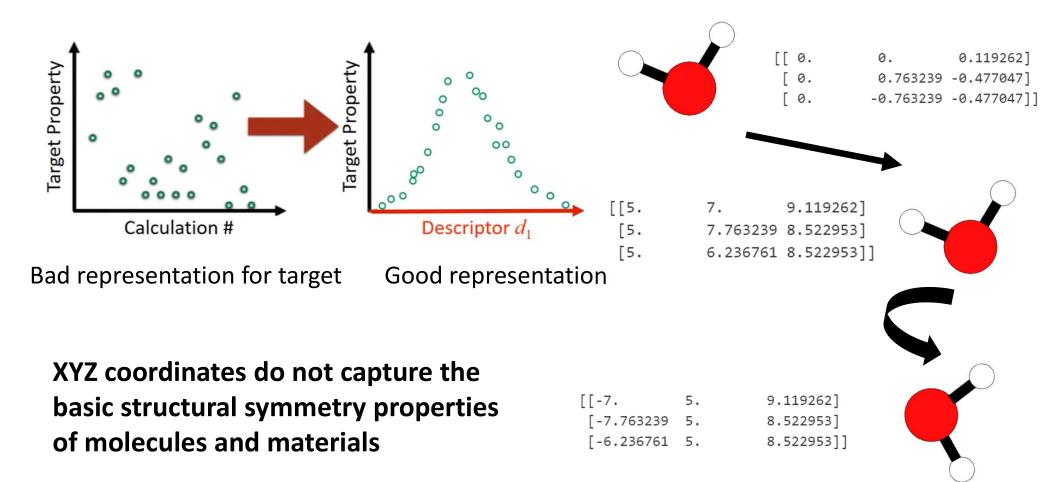
$$S = \{\vec{R}, \vec{Z}\}$$



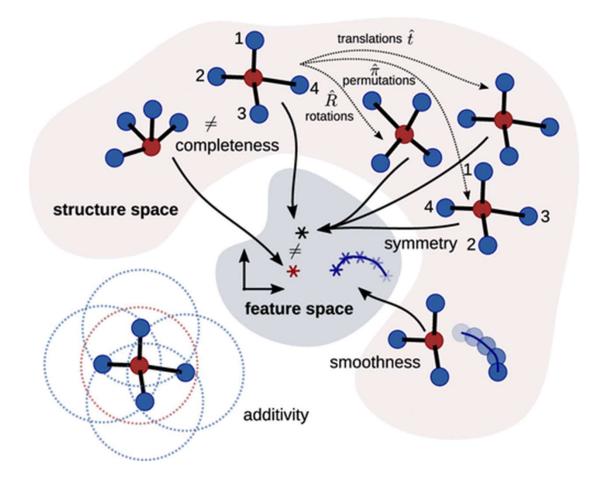
Energy landscape encodes:

- Rotational/Translational invariance
- Permutation invariance
- Symmetry/Local Features

XYZ atomic positions give a terrible representation



Requirements on molecular representations (a.k.a. descriptors)



Chem. Rev. 2021, 121, 16, 9759-9815

Symmetry Invariance:

Mapping onto the same point in feature space

Completeness & Uniqueness:

Being able to distinguish all symmetry-inequivalent arrangements by mapping onto different points in feature space

Smoothness:

Smooth changes in atomic positions lead to smooth changes in feature space

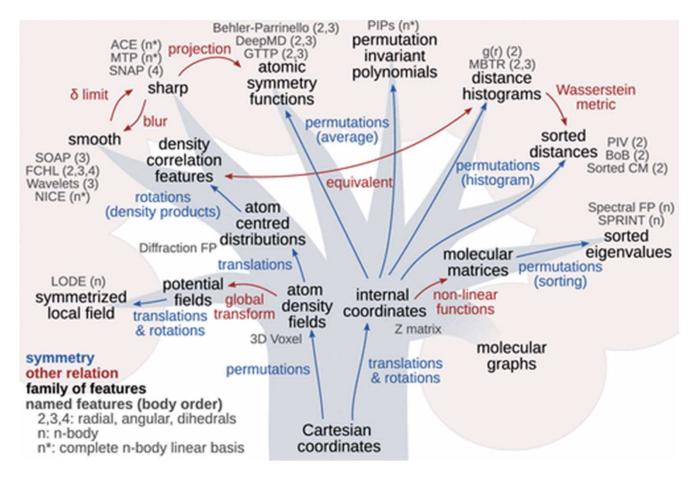
Nomenclature

- **Structure:** Atomic positions, chemical species, unit cell
- **Descriptor:** A specific method for transforming the structure of different molecules/materials into a constant vector with correct symmetry properties
- Feature vector: A vector of numbers produced by converting the structure according to a certain descriptor. The feature vector is the structural representation in "feature space"

Global descriptors

Atom-wise descriptors

There are many atomic descriptors ...



I will cover

- Coulomb Matrix (CM)
- MBTR
- SOAP
- ACE

Chem. Rev. 2021, 121, 16, 9759–9815

Coulomb Matrix

$$M_{ij}^{ ext{Coulomb}} = egin{cases} 0.5 Z_i^{2.4} & ext{for } i=j \ rac{Z_i Z_j}{R_{ij}} & ext{for } i
eq j \end{cases}$$

36.9 33.7 5.53.1 5.533.7 73.5 4.0 8.2 3.8 5.54.00.50.350.560.56

0.35

0.56

0.56

0.5

0.43

0.43

0.43

0.5

0.56

3.1

5.5

5.5

8.2

3.8

3.8

5.5

3.8

0.43

0.56

0.5

- A global representation
- Nuclear charges and atomic distances ٠
- Doesn't work for periodic systems ullet
- Molecules of different sizes require padding with zeros ٠
- Adaptations for periodic systems exist

Rupp et al. Phys. Rev. Lett. **108**, 058301 (2012)

Many Body Tensor Representation (MBTR)

• For each pair, triple, etc. of atom types, MBTR encodes a "spectrum of distances"

$$f_{2}(x,z_{1},z_{2}) = \sum_{i,j=1}^{N_{a}} w_{2}(i,j) \mathcal{D}(x,g_{2}(i,j)) C_{z_{1},Z_{i}} C_{z_{2},Z_{j}}$$

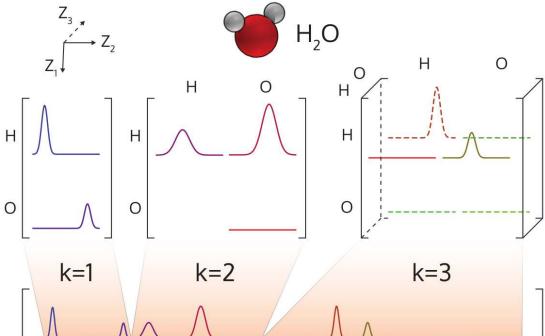
$$f_{k}(x,z) = \sum_{i=1}^{N_{a}} w_{k}(i) \mathcal{D}(x,g_{k}(i)) \prod_{j=1}^{k} C_{z_{j},Z_{i_{j}}}$$

$$H \begin{bmatrix} f_{k}(x,z) & f_{k}(x,z) \\ g_{2}(i,j) & \dots & \text{inverse distances} \end{bmatrix}$$

$$g_{3}(i,j) & \dots & \text{inverse distance metric}^{n}$$

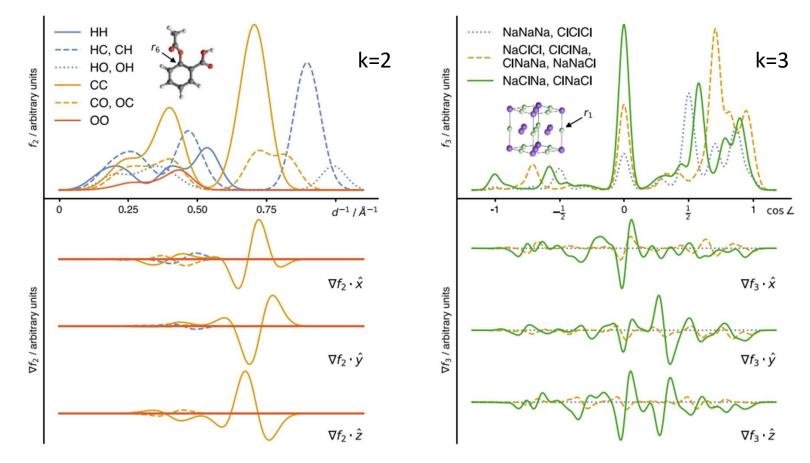
$$w_{k} & \dots & \text{weighting}$$

$$D(x,g_{k}) & \dots & \text{broadening}$$



Haoyan Huo and Matthias Rupp 2022 Mach. Learn.: Sci. Technol. 3 045017

Many Body Tensor Representation (MBTR)



differentiable, continuous, fast, versatile, interpretable

Smooth Overlap of Atomic Positions (SOAP)

- Smooth Overlap of Atomic Positions (SOAP) encodes regions of atomic geometries ("atomic environments")
- One set of features for each atom in the system with a cutoff
- Satisfies all relevant symmetries and feature requirements
- Perfect for interatomic potentials, but can be slow to calculate

Density smearing with Gaussians

Representation via radial funcs and spherical harmonics

SOAP vector by averaging over rotations

 $\rho(\mathbf{r}) = \sum_{nlm} c_{nlm} R_n(r) Y_{lm}(\widehat{\mathbf{r}}).$

Distance metric for each component of Products of Clebsch-Gordan coeffs

$$I_{mm'}^{l} = \sum_{n} c_{nlm} (c_{nlm'}')^{*} \qquad p_{nn'l} = \sum_{m} c_{nlm}^{*} c_{n'lm}$$
$$k(\rho, \rho') = \sum_{n, n', l, m, m'} c_{nlm} (c_{nlm'}')^{*} (c_{nlm})^{*} c_{n'lm'}'$$

re requirements
be slow to calculate
$$\rho(\mathbf{r}) = \sum_{i} \exp\left(-\alpha \|\mathbf{r} - \mathbf{r}_{i}\|_{2}^{2}\right) f_{\text{cut}}(|\mathbf{r}_{i}|)$$

$$k(\rho,\rho') = \int \left| S(\rho,\widehat{R}\rho') \right|^2 d\widehat{R} = \sum_{l,m,m'} (I^l_{mm'})^* I^l_{mm'}$$

Atomic Cluster Expansion (ACE)

Many-body cluster expansion

$$\varepsilon_{i} = V^{(0)}(Z_{i}) + \sum_{j_{1}} V^{(1)}(\mathbf{x}_{ij_{1}}) + \sum_{j_{1} < j_{2}} V^{(2)}(\mathbf{x}_{ij_{1}}, \mathbf{x}_{ij_{2}}) + \dots + \sum_{j_{1} < \dots < j_{\bar{\nu}}} V^{(\bar{\nu})}(\mathbf{x}_{ij_{1}}, \dots, \mathbf{x}_{ij_{\bar{\nu}}})$$
(2a)

Designed for interatomic potential $E = \sum \epsilon_i$

Atomic energy contributions

Expand each body order component in a basis

$$V^{(1)}(\mathbf{x}_{ij_{1}}) = \sum_{k_{1}} c^{(Z_{i})}_{k_{1}} \phi_{k_{1}}(\mathbf{x}_{ij_{1}})$$
$$V^{(2)}(\mathbf{x}_{ij_{1}}, \mathbf{x}_{ij_{2}}) = \sum_{k_{1}, k_{2}} c^{(Z_{i})}_{k_{1}k_{2}} \phi_{k_{1}}(\mathbf{x}_{ij_{1}}) \phi_{k_{2}}(\mathbf{x}_{ij_{2}})$$
$$\vdots \qquad \vdots$$
$$V^{(\bar{\nu})}(\mathbf{x}_{ij_{1}}, \dots, \mathbf{x}_{ij_{\bar{\nu}}}) = \sum_{k_{1}, \dots, k_{\bar{\nu}}} c^{(Z_{i})}_{k_{1}\cdots k_{\bar{\nu}}} \phi_{k_{1}}(\mathbf{x}_{ij_{1}}) \cdots \phi_{k_{\bar{\nu}}}(\mathbf{x}_{ij_{\bar{\nu}}})$$

Atomic basis: radial functions and spherical harmonics

$$\phi_{znlm}(\mathbf{r}_{ij}, Z_i, Z_j) = R_{nl}(r_{ij}, Z_i, Z_j) Y_l^m(\hat{\mathbf{r}}_{ij}) \delta_{zZ_j}$$
$$A_{znlm}^i = \sum_{i \in \mathcal{N}(i)} \phi_{znml}(\mathbf{r}_{ij}, Z_j, Z_i)$$

where $\mathcal{N}(i)$ denotes the set of indices of all atoms within the cutoff radius from atom *i*.

Drautz, Phys. Rev. B 99, 014104 (2019)

 $j \in \mathcal{N}(i)$

Body/correlation order products of basis functions

Product basis: for lexicographically ordered tuples $(z, n, l, m) = (z_t, n_t, l_t, m_t)_{t=1}^{\nu}$ we define

$$\boldsymbol{A}_{\boldsymbol{znlm}}^{i} = \prod_{t=1}^{\nu} A_{z_{t}n_{t}l_{t}m_{t}}^{i}. \tag{A2}$$

Atomic Cluster Expansion (ACE)

Making basis functions rotationally invariant

$$B_{in}^{(1)} = A_{in00},$$

$$B_{in}^{(2)} = \sum_{m=-l}^{l} (-1)^{m} A_{in1lm} A_{in2l-m},$$

$$B_{in_{1}n_{2}n_{3}}^{(3)} = \sum_{m_{1}=-l_{1}}^{l} \sum_{m_{2}=-l_{2}}^{l} \sum_{m_{3}=-l_{3}}^{l} \left(l_{1} \quad l_{2} \quad l_{3} \atop{m_{1} \quad m_{2} \quad m_{3}} \right) \times A_{in_{1}l_{1}m_{1} \quad A_{in2l_{2}m_{2}} A_{in_{3}l_{3}m_{3}},$$

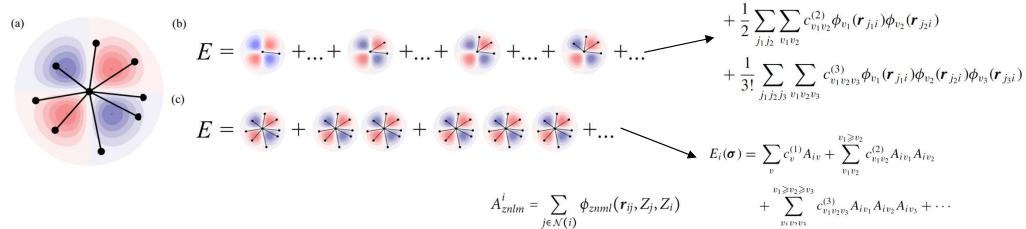
$$E_{i} = \sum_{n} c_{n}^{(1)} B_{in}^{(1)} + \sum_{n_{1}n_{2}l} c_{n_{1}n_{2}l}^{(2)} B_{in_{1}n_{2}l}^{(2)}$$

$$+ \sum_{n_{1}n_{2}n_{3}}^{l} c_{n_{1}n_{2}n_{3}}^{(3)} B_{in_{1}n_{2}n_{3}}^{(3)}$$

$$E_{i}(\sigma) = \sum_{j} \sum_{v} c_{v}^{(1)} \phi_{v}(\mathbf{r}_{ji})$$

$$+ \frac{1}{2} \sum_{v} \sum_{v} c_{v}^{(1)} \phi_{v}(\mathbf{r}_{ji}) \phi_{v_{2}}(\mathbf{r}_{j_{2}i})$$

1



ACE is a generalization of many possible atom-centred descriptors

ACE connects to SOAP, ACSFs (Behler), SOAPs, Steinhardt parameters

ACE correlation order 2 terms

Distance metric for each component of SOAP vector by averaging over rotations

$$k(\rho, \rho') = \sum_{n, n', l, m, m'} c_{nlm} (c'_{nlm'})^* (c_{nlm})^* c'_{n'lm'}$$

$$k(\varrho, \varrho') = \sum_{n_1 n_2 l} B_{n_1 n_2 l}^{(2)}(\varrho) B_{n_1 n_2 l}^{(2)}(\varrho'),$$

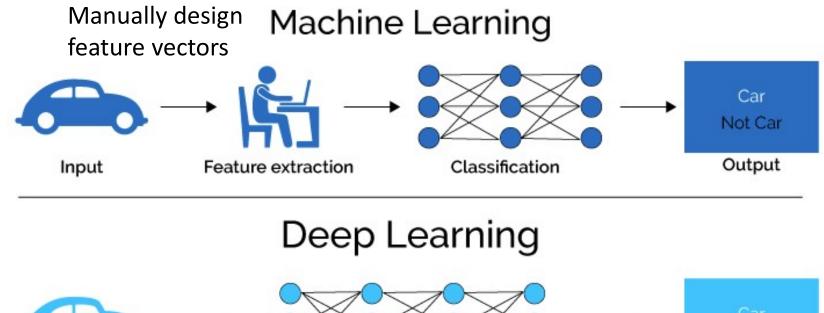
$$B_{in_1n_2l}^{(2)} = \sum_{m=-l}^{l} (-1)^m A_{in_1lm} A_{in_2l-m}$$

$$A_{znlm}^{i} = \sum_{j \in \mathcal{N}(i)} \phi_{znml}(\mathbf{r}_{ij}, Z_j, Z_i)$$

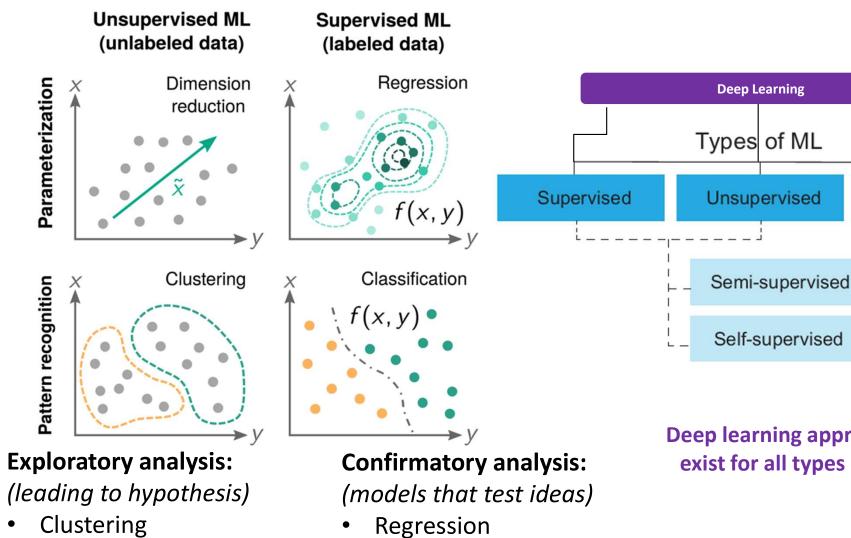
$$\phi_{znlm}(\boldsymbol{r}_{ij}, Z_i, Z_j) = R_{nl}(r_{ij}, Z_i, Z_j) Y_l^m(\hat{\boldsymbol{r}}_{ij}) \delta_{zZ_j}$$

SOAP is similar to ACE with body order 3 (correlation order 2)

Side note on features



Types of ML methods

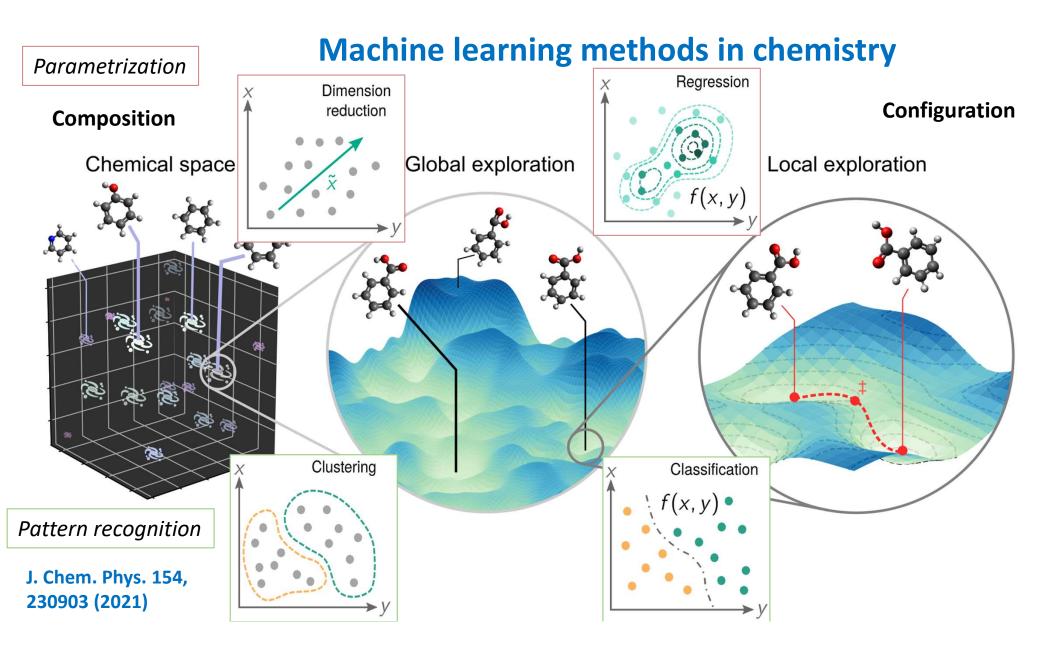


- **Dimensionality reduction**
- Classification ۲

Deep learning approaches exist for all types of ML

Reinforcement

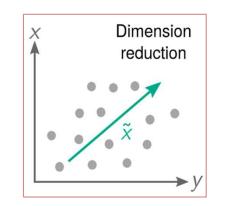
ML for chemical space exploration

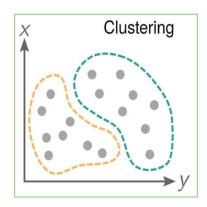


Unsupervised Machine Learning

Constructing a model from input data without corresponding output labels <u>Goal:</u> describe or understand the structure of the data.

- Dimensionality Reduction
- Clustering
- Outlier detection
- Generative Machine Learning





Unsupervised ML: Dimensionality Reduction

Dimensionality Reduction is crucial for identifying the smallest number of features that contain as much information as possible

Principal Component Analysis (PCA)

Start with input vectors \boldsymbol{x} and build covariance matrix $\boldsymbol{Q} = \boldsymbol{x}^T \boldsymbol{x}$

Covariance matrix tells us how similar each of the inputs x_i are (all pairwise dot products of x_i)

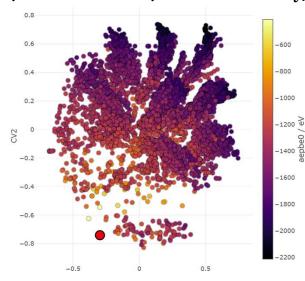
Diagonalize $Q = W \Lambda W^T$

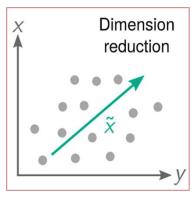
Principal Component eigenvalues $\Lambda = \text{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$

Biggest eigenvalues are responsible for most of the data variance

Principal Component eigenvectors W tell us how inputs x_i mix

Select a subset of *L* principal components and transform into lower dimensional space $\widetilde{X}_L = XW_L$





Unsupervised ML: Dimensionality Reduction

Dimensionality Reduction can help to recognize and visualize patterns in data

T-SNE: t-distributed stochastic neighbor embedding

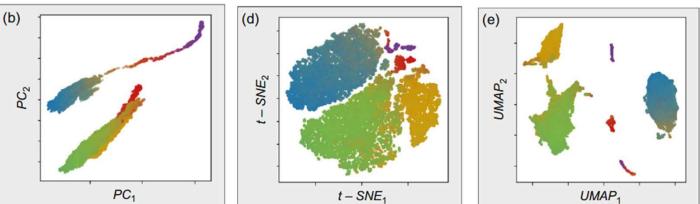
t-SNE focuses on preserving the pairwise similarities between data points in a lower-dimensional space

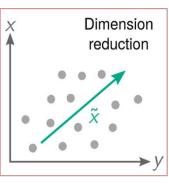
UMAP: Uniform Manifold Approximation and Projection

Similar to t-SNE but uses tricks of topological data analyses to reduce comp. overhead

t-SNE preserves small pairwise similarities whereas,

PCA maintains large pairwise distances to maximize variance.





Both are non-linear mappings

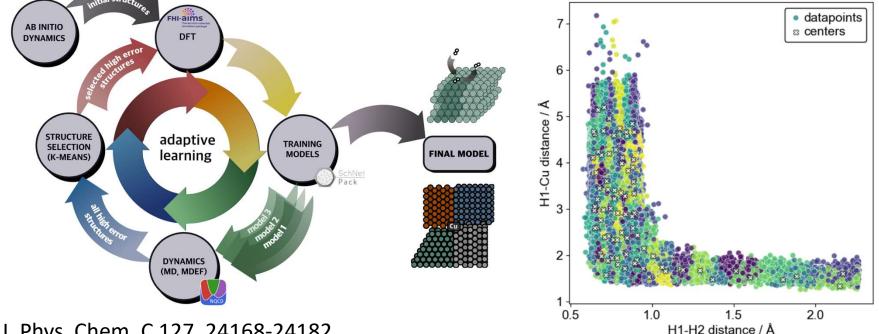
Unsupervised ML: Clustering

Example: K-Means algorithm .

 $\sum_{i=0}^{n} \min_{\mu_j \in C} (||x_i - \mu_j||^2)$

- Clusters n data points by separating them into k clusters of equal variance
- Requires number of clusters as input
- The algorithm chooses cluster centroids that minimize the distance to each point in the cluster

Clustering



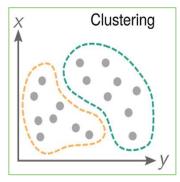
Stark et al. J. Phys. Chem. C 127, 24168-24182

Unsupervised ML: Clustering

VS.

Partition-based clustering

Density-based clustering



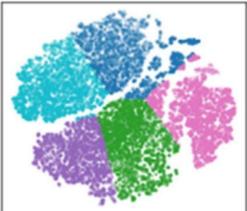
Find clusters of equal size

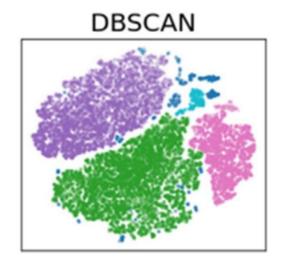
Find variable size clusters around regions of high density

e.g. K-Means

e.g. DBSCAN, HDBSCAN

K-Means





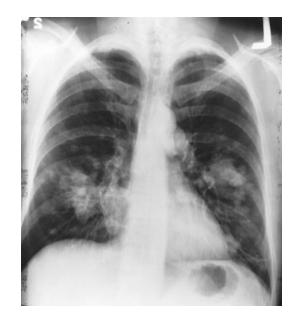
- 4 - 3 - 2 2 2 Claster ID - 1 - 0

Semi-supervised learning

- A training dataset with both labeled and unlabeled data
- when extracting relevant features from data is difficult
- labeling examples is a time-intensive task for experts

Examples:

- Medical images like MRI images
- GANs: Generative adversarial networks
 - Generator (generates output)
 - Discriminator (critiques output)
 - Battling against each other
 - Network itself provides labels



Supervised Machine Learning

Create model: y = f(x)

Discrete output space (classification) Continuous output space (regression)

Parametric model:

Number of model parameters are independent of number of training datapoints. Model has a fixed size

Non-parametric model:

Number of model parameters depend on the number of training data points.

Models we will discuss:

- Multivariate Linear Regression
- Kernel Ridge Regression
- Decision Trees

Example: pKa prediction of substituted phenols based on pKa of related benzoic acid

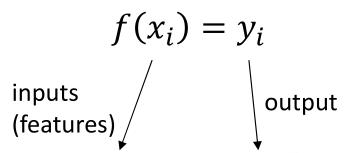
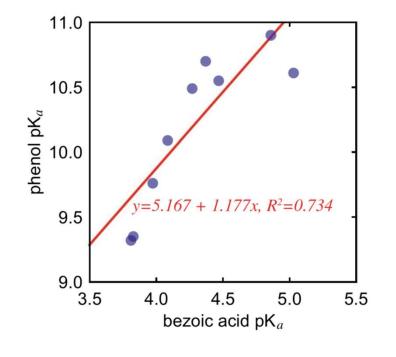


TABLE 1 pK_a of some substituted benzoic acids in water at 25°C [3], and the corresponding substituted phenols in 20% water-ethanol (v/v) at 20°C [4].

Substituent	Substituted benzoic acids	Substituted phenols 10.30	
Н	4.200		
m-NH ₂	4.360	10.37	
<i>p</i> -NH ₂	4.860	10.90	
p-N(CH ₃) ₂	5.030	10.61	
<i>m</i> -OCH ₃	4.085	10.09	
<i>p</i> -OCH ₃	4.468	10.55	
<i>m</i> -Br	3.809	9.32	
m-Cl	3.827	9.35	
p-Cl	3.973	9.76	
m-CH ₃	4.269	10.49	

Training data: 10 data points

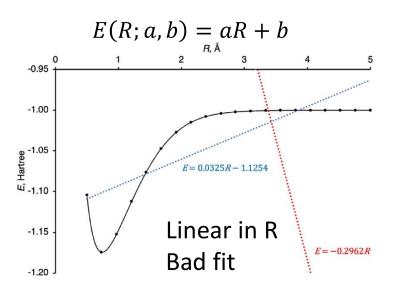


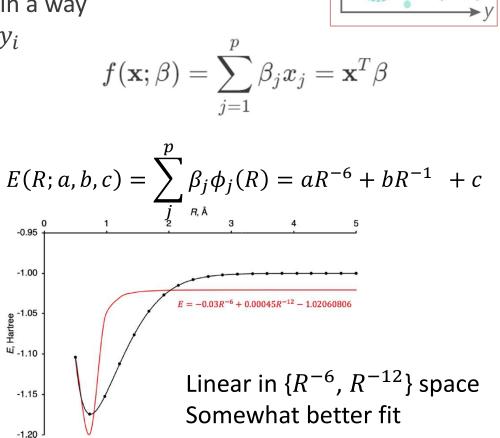
Hammett equation

Multivariate Linear Regression

- Linear fit in high dimensional space
- Find a set of regression coefficients β
- Important that input data x_i is represented in a way that shows close to linear relationship with y_i
- Many ways to fit a large set of parameters •
- Not a universal estimator so NOT ML

Example: Fit H₂ dissociation curve, E(R)





-0.95

-1.00

Regression

Kernel methods

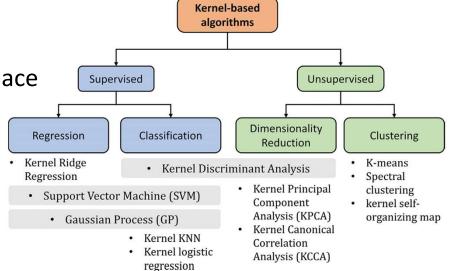
- based on similarity measure in high-dimensional space
- Extends linear fits to general non-linear models

Molecule num_atoms num_carbons num_hydrogens

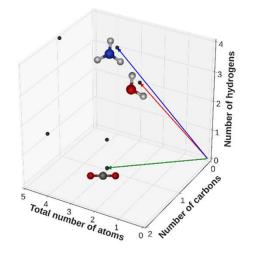
H20	3	0	2
HCN	3	1	1
C02	3	1	0
NH3	4	0	3
C2H2	4	2	2
CH4	5	1	4

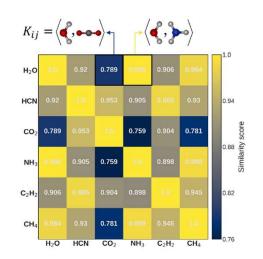
In this example, the kernel is a simple dot product (cosine similarity)

 $\boldsymbol{e}_{\mathrm{CO}_2} \cdot \boldsymbol{e}_{\mathrm{H}_2\mathrm{O}} = \cos\theta$



Kernels measure similarities ("distances")





Examples of types of Kernels

k

Linear kernel (dot product)

$$k(\mathbf{x}_i,\mathbf{x}')=\langle \mathbf{x}_i,\mathbf{x}'
angle$$

Gaussian kernel

$$(\mathbf{x}_i,\mathbf{x}') = \exp\left(-rac{1}{2\sigma^2}\sum_{j}^p(x_{ij}-x_j^{'})^2
ight)$$

Kernel Ridge Regression

Step 1: Start from linear regression

$$f(\mathbf{x};eta) = \sum_{j=1}^p eta_j x_j = \mathbf{x}^T eta$$
 ,

Step 2:

Expand coeffs. in high-dimensional space spanned by training data

Step 3:

Do the same in space of nonlinear basis functions $\{\phi\}$

$$f(\phi(\mathbf{x}')) = \sum_{i=1}^{N_{tr}} lpha_i k(\mathbf{x}_i, \mathbf{x}')$$

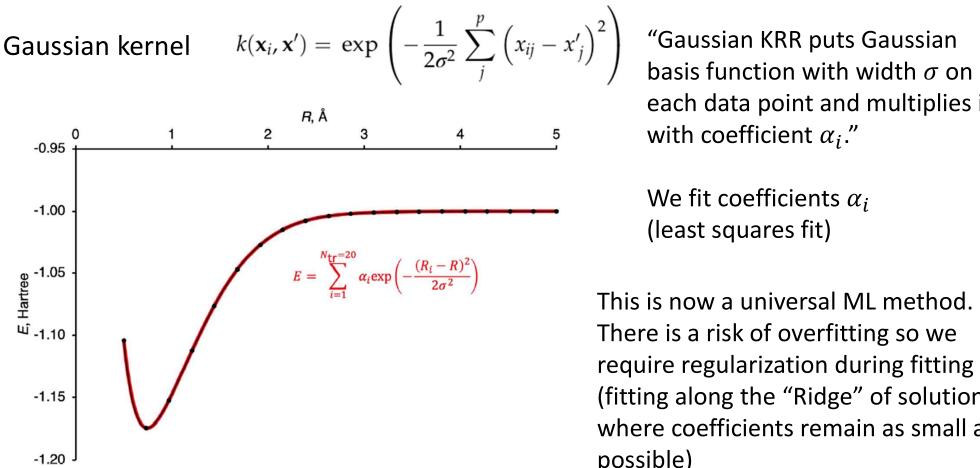
This is called the "**kernel trick**" Many different kernels/basis functions: Gaussian, Laplacian, polynomial, ... Dot product measures similarity between data point x_i and point of prediction x'

Regression

$$\mathsf{f}^{-1}k(\mathbf{x}_i,\mathbf{x}')=\langle\mathbf{x}_i,\mathbf{x}'
angle$$

then we are back to linear regression but in training data space that can be expanded -> Universal approximator

Example: Fit H₂ dissociation curve, E(R) with Kernel Ridge Regression (KRR)



each data point and multiplies it with coefficient α_i ."

We fit coefficients α_i (least squares fit)

This is now a universal ML method. There is a risk of overfitting so we require regularization during fitting (fitting along the "Ridge" of solutions where coefficients remain as small as possible)

Decision Trees

- Non-parametric supervised learning methods for classification and regression
- ✓ Simple to understand and to visualize
- Can handle numerical and categorical data
- Predictions are non-smooth
- Large trees can be unstable -> overfitting
- Tackle via ensembles of trees -> Random Forests

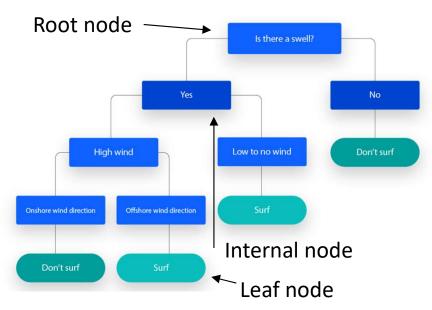
Start with dataset of (**X**, Y) where Y is the label (surf,don't surf) and **X** is a set of attributes

Internal nodes represent attribute tests, Branches represent attribute values Leaf nodes represent final decisions or predictions

swell (Y/N), wind (numerical) Wind direction (onshore/offshore)

First find good attributes X -> Finding good feature representations

How are trees built? -> Information Gain or Gini Index



Decision Trees - Classification

How are trees built? -> identify attribute tests that maximize Information Gain or minimize Gini Index

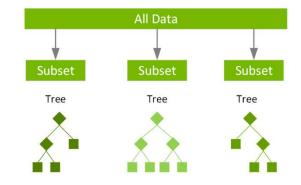
Gini Index: measures how often a randomly chosen data point would be incorrectly identified by a certain attribute test.

Attributes with lower Gini indices are preferred as they better split the data

Gini =
$$1 - \sum_{i=1}^{n} p_i^2$$
 p_i^2 probability of a certain outcome *i*

Ensembles of trees provide improved generalizability and robustness

- Gradient-boosted trees (e.g. XGBoost)
- Random forests



Reinforcement Learning

- Agent performs certain actions in an environment at each time step in a sequential decision-making framework
- Actions change the state and can provide positive or negative feedback -> goal is to learn a policy that provides maximum reward
- Uses rewards instead of labels to learn

- Temporal Credit Assignment Problem: associating a reward with an action
- Finding Trade-off between Exploitation vs. Exploration

Examples

- Video games
- Training robots
- AlphaGo

Markov process

Sequence of states $S_1, S_2, S_3, \dots, S_t, \dots$

Transition probability $t \rightarrow t + 1$

 $Pr(s_{t+1}|s_t)$

Markov reward process

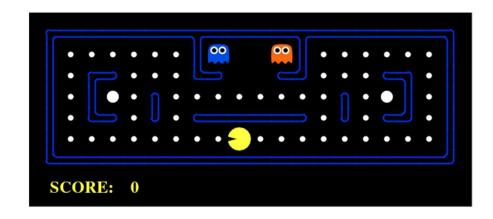
Sequence of rewards $r_1, r_2, r_3, \dots, r_t, \dots$

return
$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+l+1}$$

Markov decision process

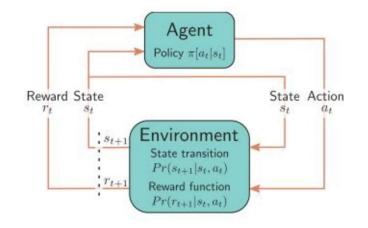
Sequence of states and actions $s_1, a_1, s_2, a_2, s_3, a_3, \dots, s_t, a_t, \dots$ Actions affect transition probability $Pr(s_{t+1}|s_t, a_t)$ Actions affect reward probability $Pr(r_{t+1}|s_t, a_t)$

<u>Policy:</u> $\pi[a|s]$ determines the action, stochastic or deterministic, stationary or time-dependent



discount factor $\gamma^k \in (0,1]$

Agent performs actions a_t



Assign value functions to states, and actions to determine optimal reward G_t

State value function $v[s_t|\pi]$ Expected return for being in state tAction value function $q[s_t, a_t|\pi]$ Expected return for executing action in state t

If we know the optimal action values, we can derive the optimal policy $\pi[a_t|s_t]$

$$v[s_{t}] = \sum_{a_{t}} \pi[a_{t}|s_{t}]q[s_{t}, a_{t}] \xrightarrow{} q[s_{t}, a_{t}] \xrightarrow{} q[s_{t}, a_{t}] = r[s_{t}, a_{t}] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_{t}, a_{t})v[s_{t+1}] \xrightarrow{} q[s_{t}, a_{t}] = r[s_{t}, a_{t}] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_{t}, a_{t})v[s_{t+1}] \xrightarrow{} q[s_{t}, a_{t}] = r[s_{t}, a_{t}] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_{t}, a_{t})v[s_{t+1}] \xrightarrow{} q[s_{t}, a_{t}] = r[s_{t}, a_{t}] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_{t}, a_{t})v[s_{t+1}] \xrightarrow{} q[s_{t}, a_{t}] = r[s_{t}, a_{t}] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_{t}, a_{t})v[s_{t+1}] \xrightarrow{} q[s_{t}, a_{t}] = r[s_{t}, a_{t}] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_{t}, a_{t})v[s_{t+1}] \xrightarrow{} q[s_{t}, a_{t}] = r[s_{t}, a_{t}] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_{t}, a_{t})v[s_{t+1}] \xrightarrow{} q[s_{t}, a_{t}] \xrightarrow{} q[s_{t}, a_{t}] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_{t}, a_{t})v[s_{t+1}] \xrightarrow{} q[s_{t}, a_{t}] \xrightarrow{} q[s_{t}, a_{t}] \xrightarrow{} q[s_{t}, a_{t}] \xrightarrow{} q[s_{t}, a_{t}] + \gamma \cdot \sum_{s_{t+1}} Pr(s_{t+1}|s_{t}, a_{t})v[s_{t+1}] \xrightarrow{} q[s_{t}, a_{t}] \xrightarrow{} q[s_{t$$

Bellman equations to define optimal policy

Types of RL

- Tabular reinforcement learning (methods that don't rely on function approximation/ML)
- Fitted Q-learning (action value function replaced by machine learning model)
- Policy gradient methods (directly learn a stochastic policy $\pi[a_t|s_t]$)
- and many more...

Putting it all together

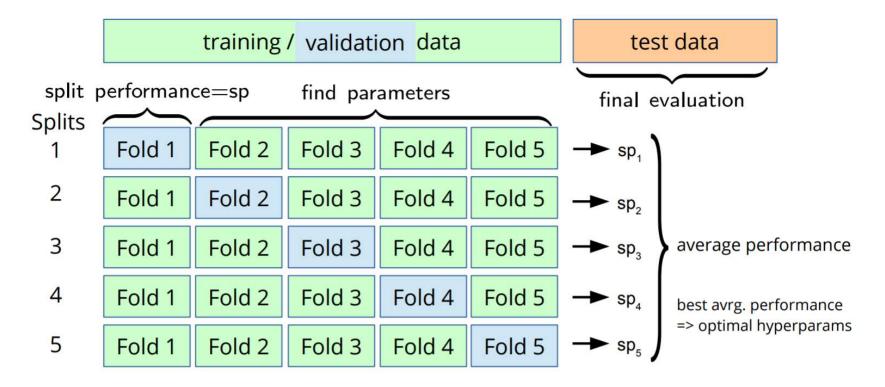
Typical workflow in ML project

- 1. Define the task and the objective (informing the loss func. and data gen.)
- 2. Generate and clean the data (e.g. find patterns, find outliers) Clustering Classification
- 3. Discover and visualize the data to gain insights (find correlations)
- 4. Prepare data for training (e.g. train/test split, scaling) **Dimensionality Reduction**
- 5. Find good data representation: "Featurization"
- 6. Select, train, and evaluate model (e.g. calculate MAE, RMSE) e.g. Classification or Regression
- 7. Optimise and fine-tune model with cross-validation
- 8. Assess accuracy and uncertainty of trained model
- 9. Generate more data to improve accuracy/uncertainty (e.g. active learning)

Clustering

10. When ready, deploy model (£££ and/or manuscript)

Validating your model: K-fold Cross Validation



- used for model validation (calculate accuracy and standard deviation of prediction)
- used for Hyperparameter optimisation (Grid search, Random search)
- Avoids overfitting

K-fold CV

• Can help to identify outliers and unbalanced datasets

Uncertainty Quantification

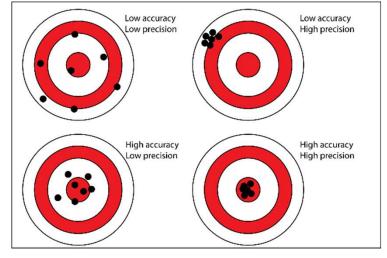
Accuracy of prediction: MAE or RMSE

Precision of prediction: ?????

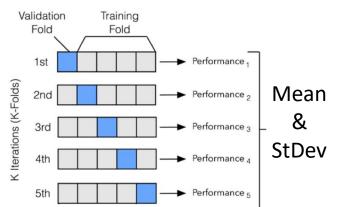
2 Sources of uncertainty in prediction:

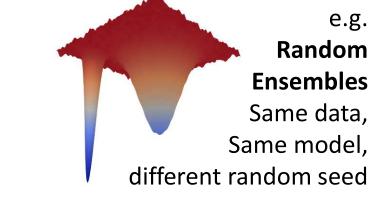
- Aleatoric uncertainty (statistical error, noise in data)
- Epistemic uncertainty (intrinsic to model)

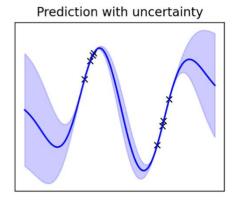
How to calculate uncertainty / standard deviation?



Bootstrapping Ensemble Learning Bayesian Uncertainty (e.g. subsampling) (stacking, bagging, boosting) (e.g. Gaussian Process Regression)







Challenges in Machine Learning

Challenge

- Insufficient quantity of training data
- Nonrepresentative training data (Bias)
- Poor-Quality data (Noise)
- Irrelevant Features
- Overfitting

Techniques to address

Adaptive/Active Learning

Uncertainty Quantification

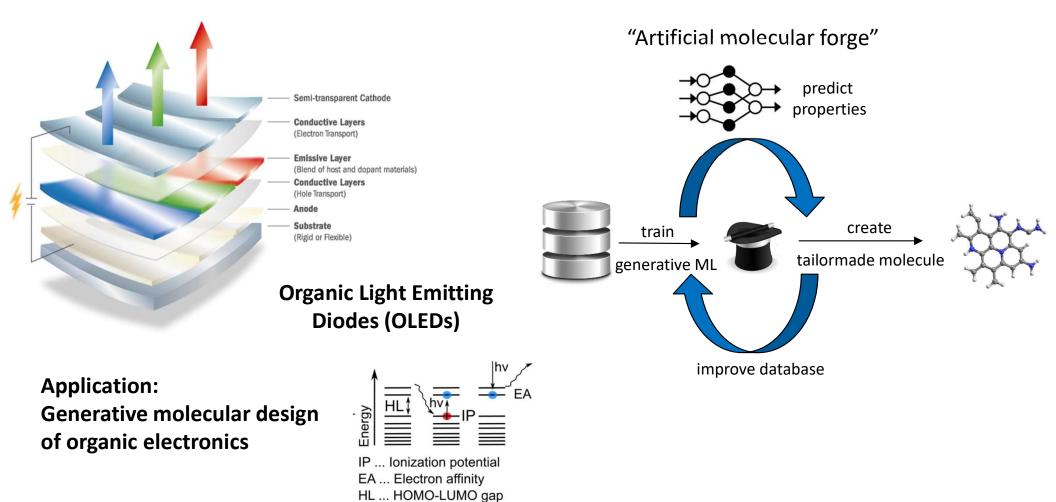
Feature Engineering/Selection

Hyperparameter Optimisation

Research Example: Generative molecular design

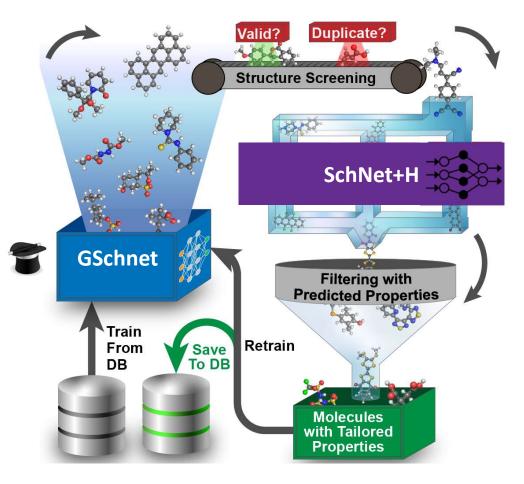
Westermayr, Maurer, Chem. Sci. 12, 10755 (2021) Westermayr et al., Nature Computational Science 3, 139-148 (2023) Koczor-Benda et al, arXiv: 2503.14748 Koczor-Benda et al., arXiv: 2503.21328

Example: Designing molecules with tailormade properties?



Nature Computational Science 3, 139–148 (2023)

Generative Design of Molecules with Tailored Properties

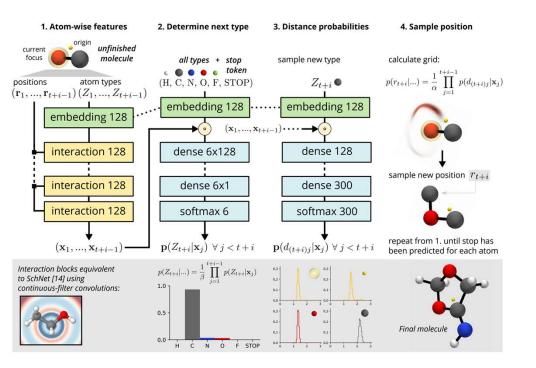


Nature Computational Science 3, 139–148 (2023)

Generative deep learning of 3D molecular structures

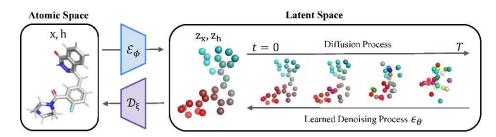
GSchnet

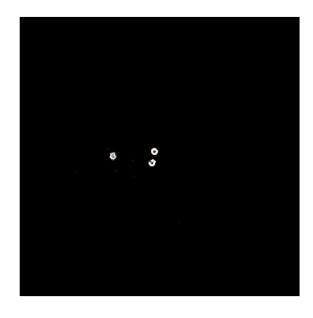
Autoregressive atom-by-atom construction of molecules



G-SchNet model: N. Gebauer et al. NeurIPS 32 (2019)

Geometric diffusion models

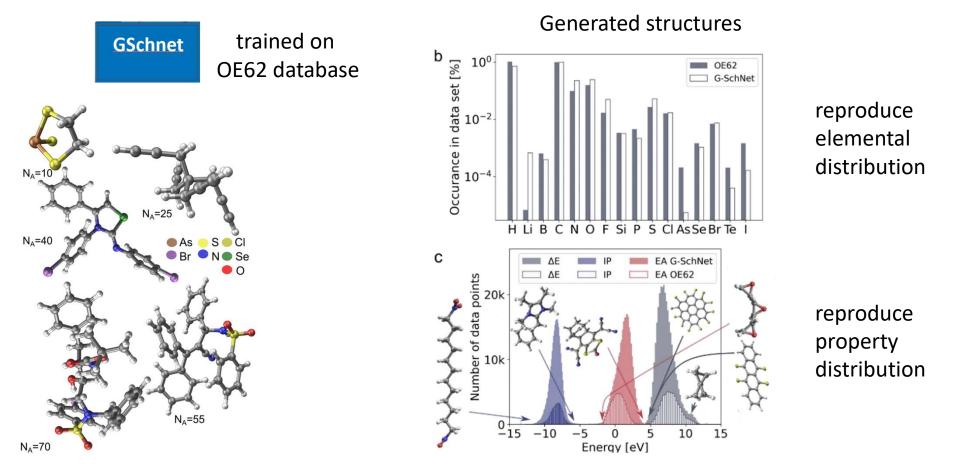




Model trained by MChem student Abudalla Al-Fekaiki

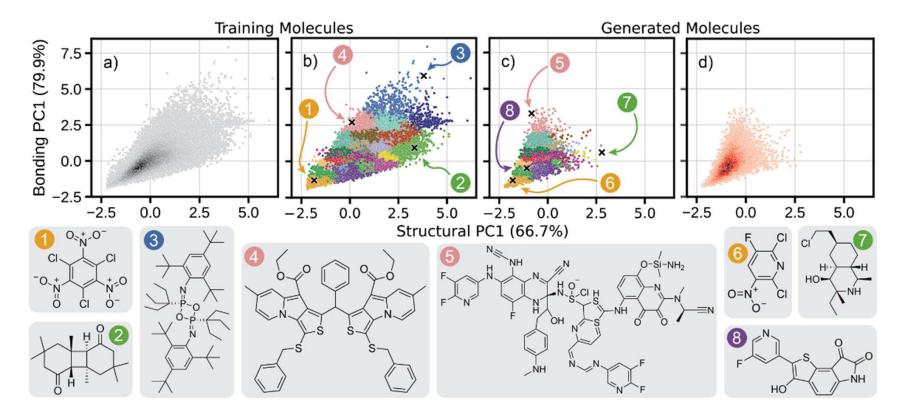
GeoLDM model: Xu et al. ICML (2023)

Generative deep learning of 3D molecular structures



Nature Computational Science 3, 139–148 (2023)

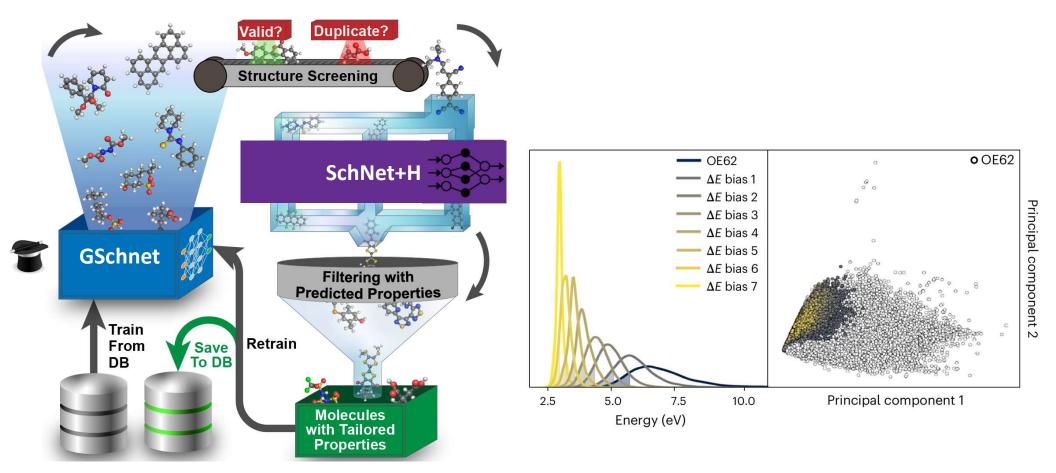
Bias in generated molecules!



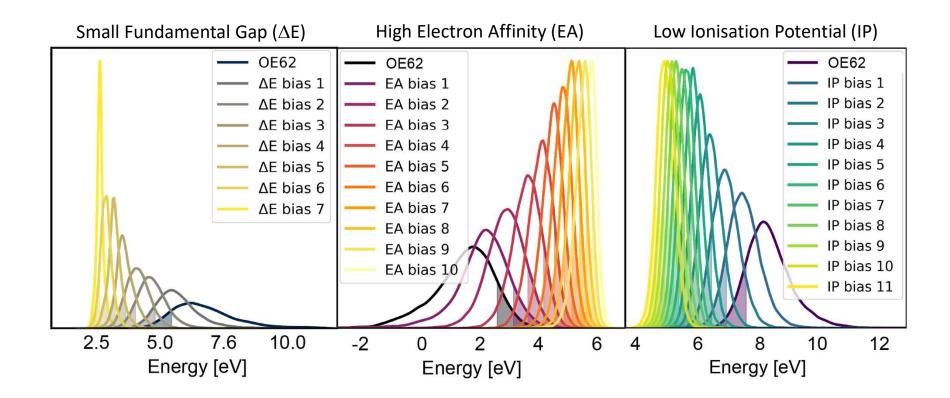
Model misses out on saturated/aliphatic structures

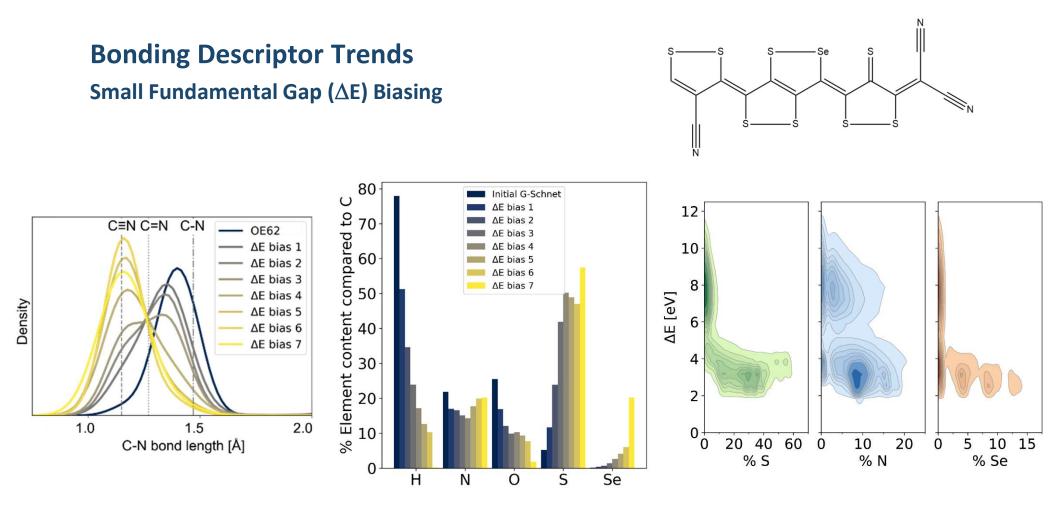
Koczor-Benda et al., arXiv: 2503.21328

Generative Design of Molecules with Tailored Properties

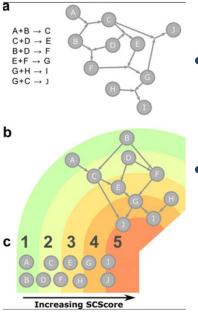


Nature Computational Science 3, 139–148 (2023)

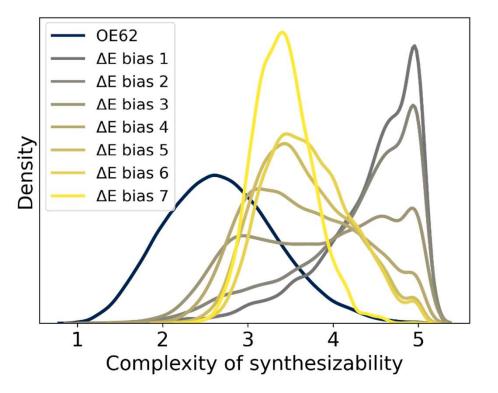




Synthetic Viability

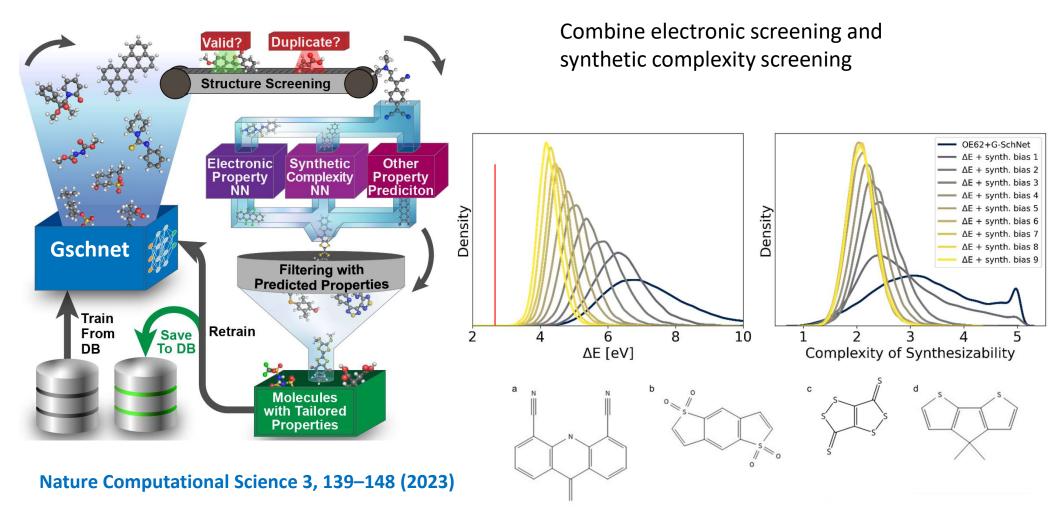


- High selenium content leads to molecules that are difficult to synthesise.
- We quantify this with the SCScore metric.¹



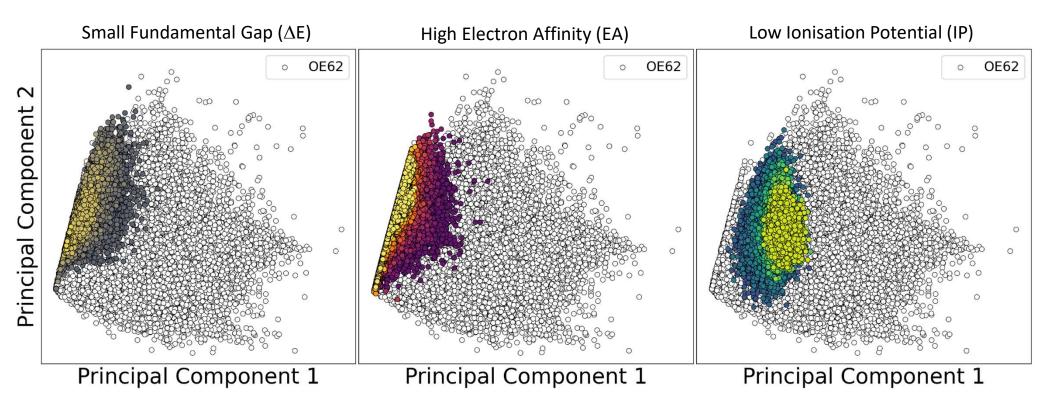
SCScore: Coley et al, J. Chem. Inform. Model. 58, 252-261 (2018)

Generative Design of Molecules with Multi-Property Optimisation



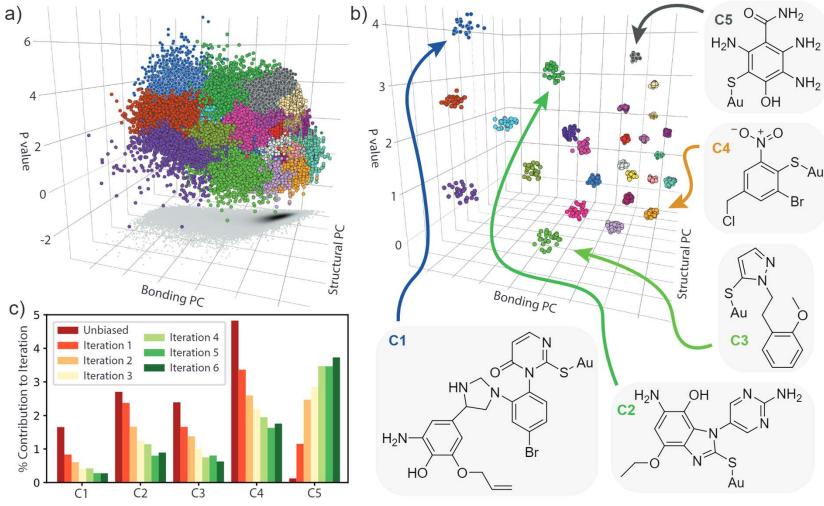
Interpreting the Data

Latent "Chemical Space" Maps with Principal Component Analysis



https://github.com/maurergroup/gschnettools

Interpreting the Data: Clustering



Koczor-Benda et al, arXiv: 2503.14748

Thank you!

Go and use ML methods for your research! BUT PLEASE

- Remember: learning \neq understanding
- Embrace reproducibility (clear workflows, write tutorials)
- Embrace openness (publish your models, data & scripts!)