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Develop machine learning surrogate models 
of electronic structure

NQCDynamics.jl



Nature Commun 10, 5024 (2019)

Deep learning of molecular spectroscopy

Chem. Sci. 12, 10755-10764 (2021)

Inverse property-driven design of electronic properties

Machine learning of electronic Hamiltonians

bulk Al

npj Computational Materials (2022)

Machine Learning 
of Electronic Structure

DFT
ML

Nature Comp. Sci. 
(2023)



Goal of this lecture

1. Know the role of machine learning in the computational physical sciences
2. Understand the basic terminology of machine learning (“Slang busting”)
3. Have an overview of methodologies and how they connect
4. Understand how to approach a typical machine learning workflow
5. Know how to prepare and analyse datasets
6. Be able to validate and optimise models with cross-validation
7. Know basic approaches to featurisation and representation in chemistry
8. Know how to evaluate and assess prediction errors and uncertainties

After this lecture (and accompanying workshop), you should ideally



Resources The Internet



Agenda
1. What is ML?
2. Basic Definitions
3. Data Representations and Features / Descriptors
4. Types of ML methods
5. Putting it all together
6. A research example



What is ML and how can it be useful?



Machine Learning is the field of study that gives the computer the ability to 
learn without being explicitly programmed. 
Arthur Samuel Learning from Data



ML is everywhere

Medical outcome analysis
Robots
Autonomous driving
Speech recognition, natural language processing
Image recognition & creation, deep fakes, ...

Commonly used in Chemistry and Materials Science research



The ML paradigm and your email spam filter

Spam

Inbox

Mail

Determines 
category

Classical Computing Paradigm

Machine Learning Paradigm

Predefined set of criteria 
that the code checks when 

analyzing email content

Learns from user/provider 
data what features of 
emails are most likely 
associated with spam

Predicts
category



Challenges in Chemistry & Materials Science

Accurate Quantum Chemistry is slow
Fast Quantum Chemistry is inaccurate

Chemical compound space is 
bigger than the known universe

଼ known molecules

ଵ଼଴ possible molecules          ଼଴ atoms in universe

ACS Chem. Neurosci. 
9, 649–657 (2012)

Machine Learning 
can help!Accelerate property prediction Accelerate materials design



Why should you use ML in your research?

Roadmap on ML in Electronic Structure
IOP Electronic Structure (2022) Perspective: J. Chem. Phys. 154, 230903 (2021)



The 4th paradigm of science



“Scientific” Machine Learning (SciML)

1. Machine Learning (ML) is an area of Artificial Intelligence (AI) that fits mathematical models to 
observed data. ML is often applied as a black box, which can limit model transferability.

2. Scientific Computing uses large scale modelling of bottom-up 'real' physics/chemistry, typically 
through numerical solution of differential equations. 
This is accurate and predictive, but often very computationally expensive.

Scientific Machine Learning (SciML) combines the strengths of the two approaches.

physical laws + data-driven machine learning methods

domain expertise

physics-informed neural networks

symmetries and conservation laws

limited quality data labels

human-interpretable



Automated Chemistry by Design (ACD) in Molecular Discovery

Chemistry by design means designing 
the composition and structure of a 
molecule or material to achieve 
specific properties and reactivity

Chemical compound space is 
bigger than the known universe

𝟏𝟖𝟎 possible molecules  
𝟖𝟎 atoms in universe
𝟖 known molecules

ACS Chem. Neurosci. 9, 649–657 (2012)

Goldman et al., J. Med. Chem. 65, 10, 7073–7087 (2022)

Various levels of automation 
can be imagined

How are new ideas generated?
How are decisions made?



Basic Definitions



ML Definitions

ML is concerned with algorithms that improve with increasing amount of available data 
under some performance measure. 

Find a predictive function that connects input space to a target space 

ML focuses on universal approximators, able to represent any function with arbitrary 
accuracy, when given enough training data and parameters.

The functional relationship to be found is specified by choosing a suitable 
loss function . 

If the loss function requires knowledge of targets (labels) , 
we speak of supervised learning.



How it works

1. Provide a training dataset, 

2. The machine is trained to capture statistical trends in and 
suggests a function 

3. Ideally, ௜ ௜ for all values

4. Then, given new (unseen) ᇱ values, 
the model should predict ᇱ ᇱ

5. We can validate how much the model has learned with a test set of data 
for which the ground truth is known

Training Dataset  
data that model sees to learn

Test/Validation Dataset
Data that is unseen to assess learning. Generate by splitting off some data (~20%)



We train a model by minimising risk

The optimal model minimizes the expected risk, , defined as the 
expectation value of :

We typically don’t know the underlying data distribution so we use 
the empirical risk instead, which is the expectation over a finite data set : 

௜ ௜

௡∈்

௜ୀଵ

The ML training process is the process of minimizing or the loss.



Different types of loss functions

L1-norm

L2-norm

௜ ௜ ௜

௡

௜

௜ ௜ ௜
ଶ

௡

௜

Different ways to measure distances between the ground truth 
and the model prediction by a single number.

Least square regression

Least absolute deviations

L1 norm more robust against outliers, but more difficult to optimize



Training and Overfitting 
Unfortunately, ௜ ௜ does not hold and 
there is an error
Many functions can map 

Let be the set of functions that map 

The accuracy of any is determined by the 
loss function 
Training is the process of minimizing the loss
e.g. through (stochastic) gradient descent
Since the set is large, we introduce regularizer terms to the optimization 
problem, which punish complex solutions that lead to overfitting

Loss landscape
https://losslandscape.com/explorer



Without regularization With regularization

Overfitting yields an increased error on unseen data by approximating a simple 
functional relationship with an overly complex function on the training set



arXiv:1712.09913
ResNet-56 with and without skip connections



Model is not sufficiently 
complex and flexible to 
capture data

Model is suitably complex 
to capture trends in data

Model is overly complex 
and will likely not generalize
to other samples 



How do we quantify the performance of a model?

Coefficient of determination

Residual sum of squares

Total sum of squares (distance from mean )

Mean Absolute Error

Root Mean Squared Error

௜ … ground truth label for data point 
௜ … model prediction for data point 

M
AE

“flexibility of the model”
(e.g. number of parameters)

Try to achieve lowest possible test set error



Types of ML methods



Confirmatory analysis:
(models that test ideas)
• Regression
• Classification

Exploratory analysis:
(leading to hypothesis)
• Clustering
• Dimensionality reduction

Deep learning approaches 
exist for all types of ML

Deep Learning



Data Representation and Features
What is the input in 



Examples of Molecular Data Representations

WIREs Comput Mol Sci. 2022; 12:e1603

• Lewis structures (2D graph)

• String representations

• Registry systems

Chemical Abstract Services Registry Number
PubChem CID
ChemSpider
ChEMBL



SMILES Simplified Molecular Input Line Entry System
String of ASCII characters that defines a molecule

• Atoms are represented with their chemical symbol
• Single bonds are implicit or (-), double bonds (=), triple bonds (#)
• Rings represented via a number after the initial atom and closing atom (e..g C1CCNCC1)
• Branching: represented with parentheses around the branch
• Aromaticity: aromatically bonded atoms in lower case or alternating -C=C-

4-ethylheptane: 
CCCC(CC)CCC

C1ccccc1, 
C1=C-C=C-C=C1, 
C1=CC=CC=C1

DeepSMILES
SELFIES (self-referencing embedded strings)

- Hard to represent unsaturated bonds, 
radicals, or unusual valences/bonding

- No info on molecular conformation
- Not well suited for generative models



Extended Connectivity Fingerprints, ECFP
(a.k.a. Morgan or Circular Fingerprints)

Rogers, D.; Hahn, M. “Extended-Connectivity Fingerprints.” J. Chem. Inf. and Model. 50:742-54 (2010)

Based on molecular graphs
Interpretable in terms of local atom groups

Implemented in 
RDKit

1. Initial assignment stage

2. Iterative updating
stage (Morgan algorithm)

3. Duplicate identifier
removal stage

4. Forming the bit array

Subgraphs are generated for each atom at 
each radius and a unique identifier is
created with a hash function



2. Iterative updating
stage (Morgan algorithm)



Many more descriptors from cheminformatics
(e.g. SMILES Cliques, molecular fingerprints)
But the typically don’t have “atomic resolution”

2. Iterative updating
stage (Morgan algorithm)

3. Duplicate identifier
removal stage

4. Forming the bit array



Molecules & Materials

Energy landscape encodes:
• Rotational/Translational invariance
• Permutation invariance
• Symmetry/Local Features

Data Representation / Featurization for Molecules & Materials



XYZ atomic positions give a terrible representation

Bad representation for target Good representation

XYZ coordinates do not capture the 
basic structural symmetry properties 
of molecules and materials



Chem. Rev. 2021, 121, 16, 9759–9815

Requirements on molecular representations (a.k.a. descriptors)

Symmetry Invariance:
Mapping onto the same point 
in feature space

Completeness & Uniqueness:
Being able to distinguish all 
symmetry-inequivalent 
arrangements by mapping onto 
different points in feature space

Smoothness:
Smooth changes in atomic 
positions lead to smooth 
changes in feature space



Nomenclature

• Structure: Atomic positions, chemical species, unit cell
• Descriptor: A specific method for transforming the structure of 

different molecules/materials into a constant vector with correct 
symmetry properties

• Feature vector: A vector of numbers produced by converting the 
structure according to a certain descriptor. The feature vector is the 
structural representation in “feature space”

Global descriptors Atom-wise descriptors



Chem. Rev. 2021, 121, 16, 9759–9815

There are many atomic descriptors …

I will cover
• Coulomb Matrix (CM)
• MBTR
• SOAP
• ACE



Coulomb Matrix

Rupp et al. Phys. Rev. Lett. 108, 058301 (2012)

• A global representation
• Nuclear charges and atomic distances
• Doesn’t work for periodic systems
• Molecules of different sizes require padding with zeros
• Adaptations for periodic systems exist



Many Body Tensor Representation (MBTR)
• For each pair, triple, etc. of atom types, MBTR encodes a “spectrum of distances”

Haoyan Huo and Matthias Rupp 2022 Mach. Learn.: Sci. Technol. 3 045017

ଶ … inverse distances

ଷ … “angle distance metric”

௞ … weighting

௞ … broadening



Many Body Tensor Representation (MBTR)

differentiable, continuous, fast, versatile, interpretable 

k=2 k=3



Density smearing with Gaussians

Representation via radial funcs and 
spherical harmonics

Distance metric for  each component of 
SOAP vector by averaging over rotations

Products of Clebsch-Gordan coeffs.

• Smooth Overlap of Atomic Positions (SOAP) encodes regions 
of atomic geometries (“atomic environments”)

• One set of features for each atom in the system with a cutoff
• Satisfies all relevant symmetries and feature requirements
• Perfect for interatomic potentials, but can be slow to calculate

Smooth Overlap of Atomic Positions (SOAP)

𝑝௡௡ᇲ௟
  = ෍ 𝑐௡௟௠

∗ 𝑐௡ᇲ௟௠

௠



Atomic Cluster Expansion (ACE)

Drautz, Phys. Rev. B 99, 014104 (2019)

Designed for interatomic potential 
construction

Atomic energy contributions

Expand each body order component in a basis

Atomic basis: radial functions and spherical harmonics

Many-body cluster expansion

Body/correlation order products of basis functions



Atomic Cluster Expansion (ACE)
Making basis functions rotationally invariant



ACE is a generalization of many possible atom-centred descriptors

ACE connects to SOAP, ACSFs (Behler), SOAPs, Steinhardt parameters

Distance metric for  each component of 
SOAP vector by averaging over rotations

ACE correlation order 2 terms

SOAP is similar to ACE with body order 3 (correlation order 2)



Side note on features

Manually design 
feature vectors



Types of ML methods



Confirmatory analysis:
(models that test ideas)
• Regression
• Classification

Exploratory analysis:
(leading to hypothesis)
• Clustering
• Dimensionality reduction

Deep learning approaches 
exist for all types of ML

Deep Learning



Chemical

ML for chemical space exploration



Machine learning methods in chemistry

J. Chem. Phys. 154, 
230903 (2021) 

Pattern recognition

Parametrization

Composition Configuration



Unsupervised Machine Learning

Constructing a model from input data without corresponding output labels 
Goal: describe or understand the structure of the data.

• Dimensionality Reduction
• Clustering
• Outlier detection
• Generative Machine Learning



Unsupervised ML: Dimensionality Reduction

Principal Component Analysis (PCA)

Dimensionality Reduction is crucial for identifying the smallest 
number of features that contain as much information as possible

Start with input vectors  and build covariance matrix ்

Covariance matrix tells us how similar each of the inputs ௜ are (all pairwise dot products of ௜)

Diagonalize ்

Principal Component eigenvalues ଵ ଶ ௡

Principal Component eigenvectors W tell us how inputs 𝒊 mix

Biggest eigenvalues are responsible for most of the data variance

Select a subset of principal components and 
transform into lower dimensional space

௅ ௅



T-SNE: t-distributed stochastic neighbor embedding

Unsupervised ML: Dimensionality Reduction
Dimensionality Reduction can help to recognize and visualize patterns in data 

UMAP: Uniform Manifold Approximation and Projection
Similar to t-SNE but uses tricks of topological data analyses to reduce comp. overhead

t-SNE focuses on preserving the pairwise similarities between data points in a 
lower-dimensional space

t-SNE preserves small pairwise similarities whereas, 
PCA maintains large pairwise distances to maximize variance. 

Both are non-linear mappings



Unsupervised ML: Clustering

Stark et al. J. Phys. Chem. C 127, 24168-24182

Example: K-Means algorithm • Clusters data points by separating them 
into clusters of equal variance

• Requires number of clusters as input
• The algorithm chooses cluster centroids that 

minimize the distance to each point in the cluster



Unsupervised ML: Clustering

e.g. K-Means

Partition-based clustering Density-based clustering

e.g. DBSCAN, HDBSCAN

vs.

Find clusters of equal size Find variable size clusters around regions of high density



Semi-supervised learning

A training dataset with both – labeled and unlabeled – data
when extracting relevant features from data is difficult
labeling examples is a time-intensive task for experts

Examples:
Medical images like MRI images
GANs: Generative adversarial networks
– Generator (generates output) 
– Discriminator (critiques output)
– Battling against each other
– Network itself provides labels



Supervised Machine Learning
Create model:

Discrete output space (classification)
Continuous output space (regression)

Parametric model:
Number of model 
parameters are 
independent of number 
of training datapoints.
Model has a fixed size

Non-parametric model:
Number of model 
parameters depend on 
the number of training 
data points.

Models we will discuss:
• Multivariate Linear Regression
• Kernel Ridge Regression
• Decision Trees



Example: pKa prediction of substituted phenols based on pKa of related benzoic acid

inputs
(features)

output

Training data: 10 data points

Hammett equation



Multivariate Linear Regression
• Linear fit in high dimensional space
• Find a set of regression coefficients 
• Important that input data ௜ is represented in a way 

that shows close to linear relationship with ௜

• Many ways to fit a large set of parameters
• Not a universal estimator so NOT ML

Example: Fit H2 dissociation curve, 

Linear in R
Bad fit

௝ ௝
ି଺

௣

௝

ିଵ

Linear in { ି଺, ିଵଶ} space
Somewhat better fit



Kernel methods
• based on similarity measure in high-dimensional space
• Extends linear fits to general non-linear models

In this example, the kernel
is a simple dot product 
(cosine similarity)

େ୓మ ୌమ୓ Kernels measure similarities (“distances”)

Examples of types of Kernels

Linear kernel
(dot product)

Gaussian
kernel



Kernel Ridge Regression
Step 1:
Start from linear regression

Step 2: 
Expand coeffs. in high-dimensional space 
spanned by training data

Dot product measures similarity
between data point ௜

and point of prediction 

Step 3: 
Do the same in space of nonlinear basis functions 

This is called the “kernel trick”
Many different kernels/basis functions:
Gaussian, Laplacian, polynomial, …

If
then we are back to linear regression but in 
training data space that can be expanded

-> Universal approximator



Example: Fit H2 dissociation curve, with Kernel Ridge Regression (KRR)

Gaussian kernel “Gaussian KRR puts Gaussian 
basis function with width on 
each data point and multiplies it 
with coefficient ௜.”

We fit coefficients ௜

(least squares fit)

This is now a universal ML method. 
There is a risk of overfitting so we 
require regularization during fitting 
(fitting along the “Ridge” of solutions 
where coefficients remain as small as 
possible)



Decision Trees
 Non-parametric supervised learning methods for 

classification and regression
 Simple to understand and to visualize
 Can handle numerical and categorical data
o Predictions are non-smooth
o Large trees can be unstable -> overfitting
 Tackle via ensembles of trees -> Random Forests

Root node

Internal node

Leaf node

First find good attributes X -> Finding good feature representations

Internal nodes represent attribute tests, 
Branches represent attribute values
Leaf nodes represent final decisions or predictions

Start with dataset of (X, Y) where Y is the label (surf,don’t surf) and X is a set of attributes

swell (Y/N), 
wind (numerical)
Wind direction (onshore/offshore)

How are trees built? -> Information Gain or Gini Index



Decision Trees - Classification

Gini Index: measures how often a randomly chosen data point would be incorrectly identified by a 
certain attribute test.
Attributes with lower Gini indices are preferred as they better split the data

How are trees built? -> identify attribute tests that maximize Information Gain or minimize Gini Index

௜
ଶ

௡

௜ୀଵ

௜
ଶ probability of a certain outcome i

Ensembles of trees provide improved generalizability and robustness
• Gradient-boosted trees (e.g. XGBoost)
• Random forests



Reinforcement Learning

• Uses rewards instead of labels to learn

• Agent performs certain actions in an environment at each time step in a 
sequential decision-making framework

• Actions change the state and can provide positive or negative feedback -> goal 
is to learn a policy that provides maximum reward

• Temporal Credit Assignment Problem: associating a reward with an action
• Finding Trade-off between Exploitation vs. Exploration Examples

Video games
Training robots
AlphaGo



Markov reward process

௧
௞

௧ା௟ାଵ

ஶ

௞ୀ଴

return

Markov process

ଵ ଶ ଷ ௧

Transition probability     

௧ାଵ ௧

Sequence of states

ଵ ଶ ଷ ௧Sequence of rewards discount factor ௞

Markov decision process

ଵ ଵ ଶ ଶ ଷ ଷ ௧ ௧Sequence of states and actions

Actions affect transition probability ௧ାଵ ௧ ௧

Actions affect reward probability ௧ାଵ ௧ ௧

Agent performs actions ௧

Policy: determines the action, stochastic or deterministic, stationary or time-dependent



Assign value functions to states, and actions to determine optimal reward ௧

௧

௧ ௧

State value function

Action value function

Expected return for being in state t

Expected return for executing action in state t

If we know the optimal action values, we can derive the optimal policy ௧ ௧

Types of RL
• Tabular reinforcement learning (methods that don’t rely on function approximation/ML)
• Fitted Q-learning (action value function replaced by machine learning model)
• Policy gradient methods (directly learn a stochastic policy ௧ ௧ )
• and many more…

Bellman equations to 
define optimal policy



Putting it all together



Typical workflow in ML project

1. Define the task and the objective (informing the loss func. and data gen.)
2. Generate and clean the data (e.g. find patterns, find outliers)
3. Discover and visualize the data to gain insights (find correlations)
4. Prepare data for training (e.g. train/test split, scaling)
5. Find good data representation: “Featurization”
6. Select, train, and evaluate model (e.g. calculate MAE, RMSE)
7. Optimise and fine-tune model with cross-validation
8. Assess accuracy and uncertainty of trained model
9. Generate more data to improve accuracy/uncertainty (e.g. active learning)
10. When ready, deploy model (£££ and/or manuscript)

Dimensionality Reduction

Classification

e.g. Classification 
or Regression

Clustering

Clustering



Validating your model: K-fold Cross Validation

K-fold CV • used for model validation (calculate accuracy and standard deviation of prediction)
• used for Hyperparameter optimisation (Grid search, Random search)
• Avoids overfitting
• Can help to identify outliers and unbalanced datasets



Uncertainty Quantification
Accuracy of prediction: 

Precision of prediction:   ????? 

MAE or RMSE

Ensemble Learning
(stacking, bagging, boosting)

2 Sources of uncertainty in prediction:
• Aleatoric uncertainty (statistical error, noise in data)
• Epistemic uncertainty (intrinsic to model)

How to calculate uncertainty / standard deviation?

Bootstrapping 
(e.g. subsampling)

Mean
&

StDev

e.g. 
Random 

Ensembles
Same data, 

Same model, 
different random seed

Bayesian Uncertainty
(e.g. Gaussian Process Regression)



Challenges in Machine Learning

• Insufficient quantity of training data

• Nonrepresentative training data (Bias)

• Poor-Quality data (Noise)

• Irrelevant Features

• Overfitting

Techniques to address Challenge

Adaptive/Active Learning

Feature Engineering/Selection

Hyperparameter Optimisation

Uncertainty Quantification



Research Example: Generative molecular design

Westermayr, Maurer, Chem. Sci. 12, 10755 (2021)
Westermayr et al., Nature Computational Science 3, 139-148 (2023)
Koczor-Benda et al, arXiv: 2503.14748
Koczor-Benda et al., arXiv: 2503.21328



Application: 
Generative molecular design 
of organic electronics

Example: Designing molecules with tailormade properties?

“Natural molecular forge” “Artificial molecular forge”

train

generative ML

create

tailormade molecule

improve database

Organic Light Emitting 
Diodes (OLEDs)

predict 
properties

Nature Computational Science 3, 139–148 (2023)



Generative Design of Molecules with Tailored Properties

GSchnet

SchNet+H

Nature Computational Science 3, 139–148 (2023)



Generative deep learning of 3D molecular structures

G-SchNet model: N. Gebauer et al. NeurIPS 32 (2019)

Autoregressive atom-by-atom 
construction of molecules Geometric diffusion models

GeoLDM model:
Xu et al. ICML (2023)

Model trained
by MChem student 
Abudalla Al-Fekaiki



Generative deep learning of 3D molecular structures

trained on
OE62 database

Nature Computational Science 3, 139–148 (2023)

Generated structures

reproduce 
elemental 
distribution

reproduce 
property 
distribution



Koczor-Benda et al., arXiv: 2503.21328

Model misses out on saturated/aliphatic structures

Bias in generated molecules!



Generative Design of Molecules with Tailored Properties

GSchnet

SchNet+H

Nature Computational Science 3, 139–148 (2023)
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Small Fundamental Gap (E) High Electron Affinity (EA) Low Ionisation Potential (IP)



Bonding Descriptor Trends
Small Fundamental Gap (E) Biasing



Synthetic Viability

• High selenium content leads 
to molecules that are difficult 
to synthesise.

• We quantify this with the 
SCScore metric.1

SCScore: Coley et al, J. Chem. Inform. Model. 58, 252-261 (2018)



Generative Design of Molecules with Multi-Property Optimisation

Gschnet

Combine electronic screening and 
synthetic complexity screening

Nature Computational Science 3, 139–148 (2023)



Interpreting the Data
Latent “Chemical Space” Maps with Principal Component Analysis

Small Fundamental Gap (E) High Electron Affinity (EA) Low Ionisation Potential (IP)

https://github.com/maurergroup/gschnettools



Interpreting the Data: Clustering

Koczor-Benda et al, arXiv: 2503.14748



Thank you!

Go and use ML methods for your research!
BUT PLEASE
• Remember: learning understanding
• Embrace reproducibility (clear workflows, write tutorials)
• Embrace openness (publish your models, data & scripts!)


