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CONVOLUTIONAL NEURAL NETS: THE POWER OF INDUCTIVE BIAS

The inductive bias (also known as learning bias) of a learning algorithm is the 
set of assumptions that the learner uses to predict outputs of given inputs 
that it has not encountered.

The need for biases in learning generalizations, CBM-TR 5-110, New 

Brunswick, New Jersey, USA: Rutgers University



OVERVIEW

▪ Intro to convolutional neural networks

▪ Building blocks of CNNs

▪ Deep CNNs

▪ Advanced CNNs – Residual blocks



DRAWBACKS OF MLPS

MLPs have no spatial awareness and also suffer from parametric explosions as the input gets larger



EARLY CNNS

LeCun – restricting the number of parameters in a NN leads to better generalisation



STRUCTURE OF A CONVOLUTIONAL LAYER

Typical convolutional layers have three main ingredients:

▪ Kernel

▪ Pooling

▪ Activation



CONVOLUTION IN ACTION: KERNEL

▪ Input + kernel -> activation map



CONVOLUTION IN ACTION: PADDING

▪ Padding around the outside of images

▪ Zero pad: pad with zeros to make torch.nn.ZeroPad2d(padding)

▪ No padding output.shape < input.shape



CONVOLUTION IN ACTION: STRIDING

Controls how the filter slides across the image



GO TO NOTEBOOK

Let’s try building and understanding some filters



CONVOLUTION IN ACTION: POOLING

Pooling compresses information content between layers 
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The most commonly used pooling is choosing the maximum value patchwise; max pooling



CONVOLUTION IN ACTION: PUTTING IT TOGETHER 

Input image – 1 channel

3 filters

Activation 

function

Activations – 3 channels

Max 

pooling

Output – 3 channels 

reduced dimensions



A DEEP CNN

Conv + ReLU

Max Pool

(224, 224, 64)

(112, 112, 128)

(56, 56, 256)

(28, 28, 512)
(14, 14, 1024)

(w, h, c)

VGG-16

Fully connected (dense) layer



BATCH NORMALISATION

Normalise the outputs from intermediate layers

Makes weights deep in the NN more robust to changes early in the NN
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BUILDING BLOCKS: CONVOLUTION BLOCK

import torch

import torch.nn as nn

import torch.nn.functional as F

nn.Conv2d(in_channels=1, out_channels=6,kernel_size=5)

F.max_pool2d(x, kernel_size=2)



Hierarchy of filters

▪ Stacking deep networks means that different levels of features are learned 
at different depths

Edges

Texture

s

Parts



Advanced CNNs: Residual blocks

▪ A connection that passes the input over a 
block of convolutions

▪ Useful in very deep architectures

▪ Allows network to learn to skip blocks

▪ Allows gradient to pass back through the 
network more effectively in backprop



CONCEPT CHECKLIST

Origins of convolutional neural 
networks

Building blocks of CNNs – kernel, 
padding, stride

Max pooling

Deep CNNs

Batch normalisation

Feature detection in different layers

Residual blocks
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THANK YOU

mdi-group.github.com
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