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CONVOLUTIONAL NEURAL NETS: THE POWER OF INDUCTIVE BIAS

The Need for Biases in Learning Generalizations

Tom M. Mitchell

The inductive bias (also known as learning bias) of a learning algorithm is the
set of assumptions that the learner uses to predict outputs of given inputs
that it has not encountered.

The need for biases in learning generalizations, CBM-TR 5-110, New
Brunswick, New Jersey, USA: Rutgers University



OVERVIEW

Intro to convolutional neural networks
Building blocks of CNNs

Deep CNNs

Advanced CNNs - Residual blocks



DRAWBACKS OF MLPS

MLPs have no spatial awareness and also suffer from parametric explosions as the input gets larger
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EARLY CNNS

LeCun - restricting the number of parameters in a NN leads to better generalisation
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STRUCTURE OF A CONVOLUTIONAL LAYER

Typical convolutional layers have three main ingredients:

= Kernel
- Pooling Extract Sum
= Activation 1/l4al3]5 1]4]3 1] 0]-1 103 gll-2

5/12111|l5 5|2 X20-2=100-2

all 7] 2|2 4|72 1]0/-1 410]-2

60|98

Kernel, 3x3
Output, 5x5

Input, 7x7



CONVOLUTION IN ACTION: KERNEL

" |nput + kernel -> activation map

Extract
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Output, 5x5




CONVOLUTION IN ACTION: PADDING

* Padding around the outside of images
= Zero pad: pad with zeros to make torch.nn.ZeroPad2d (padding)
* No padding output.shape < input.shape

offofofoflo]o]oo]0:
0 0:
0 0!
;0 0

mp) o 0!  mmp
‘0 0

Padding 7 Y Convolve
io oé
to]o]olofofo[o[o]o:

Input, 7x7 Output, 7x7

Input padded with 0, 9x9



Stride

CONVOLUTION IN ACTION: STRIDING

Controls how the filter slides across the image

Stride = 2
A~
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{ output width = 3 1
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GO TO NOTEBOOK

Let’s try building and understanding some filters




CONVOLUTION IN ACTION: POOLING

Pooling compresses information content between layers

Max Pool (2, 2)

The most commonly used pooling is choosing the maximum value patchwise; max pooling



CONVOLUTION IN ACTION: PUTTING IT TOGETHER

Output — 3 channels
reduced dimensions

Input image — 1 channel Activations — 3 channels

i Activation Max

function pooling
3 filters




(224, 224, 64) A DEEP CNN

VGG-16
(112, 112, 128)
(w, h, c)
(56, 56, 256)
(28, 28, 512)

(14, 14, 1024)

. Conv + ReLU
_ Max Pool

. Fully connected (dense) layer




BATCH NORMALISATION

Normalise the outputs from intermediate layers

Batch
normalization

I

Max
pooling

Makes weights deep in the NN more robust to changes early in the NN



BUILDING BLOCKS: CONVOLUTION BLOCK

import torch

import as nn
import as F
nn in_channels=1, out channels=6,kernel size=5

F X, kernel size=2



Hierarchy of filters

" Stacking deep networks means that different levels of features are learned
at different depths

Texture Parts
S




Advanced CNNs: Residual blocks

" A connection that passes the input over a
block of convolutions

» Useful in very deep architectures
" Allows network to learn to skip blocks

" Allows gradient to pass back through the
network more effectively in backprop




CONCEPT CHECKLIST

Origins of convolutional neural
networks

Building blocks of CNNs - kernel,
padding, stride

Max pooling

Deep CNNs

Batch normalisation

Feature detection in different layers

Residual blocks
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THANK YOU
’ mdi-group.github.com
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