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Lecture Outline

• Brief Intro to MLIPs: Context and Overview

• Anatomy of a potential: locality, E0s, forces

• Atomic Descriptors: Symmetry, Smoothness, Completeness 

• Models Architectures: Linear, Kernel, MPNNs (MACE) 

• Fitting and testing MLIPs



Multiscale Molecular Modelling - the Battle of Approximations

abstract 
electrons

abstract exact 
dynamics

abstract 
atoms

abstract all 
particleslast 100 years:

'battle of approximations'

last 10 years:

Machine Learning: discover 

data-driven approximations

'battle of computing resources'



Force-field, Potential Energy, Molecular Dynamics

Molecular Dynamics is the method we 
use to explore the potential energy 
surface of the nuclei

We obtain forces as the gradient of the 
potential energy surface:

We integrate Newton's second low of 
motion to update positions



Ab Initio Molecular Dynamics

Solve very expensive Schrodinger Equation to obtain energies, forces
Update positions very slightly (1.0 femtosecond at a time)

Discard old Schrodinger solution, solve again for very similar geometry.

Solve Schrödinger Eq.
Electronic ground 

state, 𝜓, 𝜌(𝑟)

99.99% of computing time
Atomic positions 𝑟𝑖

Forces on nuclei 𝐹𝑖

Newton's law
𝑚 ሷ𝑟 = 𝐹 𝑟 = −∇𝑉 𝑟



Machine Learning Interatomic Potentials (MLIPs)

MLIPs learn the mapping from geometry to energy, forces
Instead of using simple functions (MM), they use universal approximators

Can speed up the dynamics significantly! 1000-1M X

Solve Schrödinger Eq.
Electronic ground 

state, 𝜓, 𝜌(𝑟)

Atomic positions 𝑟𝑖

Forces on nuclei 𝐹𝑖

Newton's law
𝑚 ሷ𝑟 = 𝐹 𝑟 = −∇𝑉 𝑟

Map from atomic 
positions to total energy

𝐸 ≡ 𝑉 𝑟 ∶  𝑅3𝑁 → 𝑅



MLIPs generalize Molecular Mechanics (MM) Forcefields

In QM, PES from solving the 
Schrodinger Equation (Born-
Oppenheimer approximation)

In MM, PES using empirical 
parameters: bond, angles, charges 
(generally non-reactive)

In MLIPS, PES interpolated from know 
geometries to new geometries 
(capture chemical reactions)

𝐸 = 𝐸 𝑟1, 𝑟2, …The PES:

speed gain
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QM
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MLIPs

100 atoms, 10 ps

1 mil atoms, 
1 ms

10k atoms,
100 ns



What's the speedup? It depends.
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Size of Basis

Wave-function methods

Not all QM methods are created equal:

DFT

MLIP cost is constant regardless of accuracy of PES!
Training is more expensive of course!



Body-order in Molecular Mechanics

Short range

covalent

bonding

Long range

non-bonded

interactions

rij

Bonds (2-body)

Angles (3-body)

Dihedrals (4-body)

Pairs (2-body)



Is There Anything Missing?

𝑬 = 𝒌𝟏𝒓𝟐

+𝒌𝟐𝒓𝟑 + 𝒌𝟑𝒓𝟒 + ⋯

harmonic potential vs 
real potential

higher-order nonlinear 
terms to improve the 
approximation

bonded angles

how about non-
bonded angles?

how about bond-angle 
interactions etc ...? 𝑬 = 𝒌𝟒𝒓 𝜽 +𝒌𝟓 𝒓 𝜽𝟐 + ⋯ 



𝜕𝑁𝑃

𝜕𝑥𝑖1
, . . . , 𝜕𝑥𝑖𝑁

≠ 0

Maximum Body-order of MLIP:

Bonds (2-body)

Angles (3-body)

Dihedrals / Impropers (4-body)

enumerated from the outset

all Pairs within cutoff (2-body)

all Triangles (3-body)

all Tetrahedra (4-body) ...

determined on the fly: inferred from data

MLIPs generalize MM Force Fields



General Anatomy of the MLIP

Potential Energy
Atomic Forces

Structure/Geometry

…

XYZ Coordinates

Chemical elements

Atomic Descriptors / 
Features

𝒑𝒊 =  𝑷(𝒙𝒊) 

𝑬 = 𝑼 𝒑𝒊 = 𝑼(𝑷(𝒙𝒊)) 

𝐹 𝑝 = 

𝑖

𝑤𝑖 𝑝𝑖
𝐹 𝑝

𝑝

ℎ  
𝑤𝑖𝑗

Neural Network Models:

𝐹 𝑝 = 

𝑖

𝑤𝑖 𝐾(𝑝, 𝑝𝑖)

Kernel Models:

Gaussian Approximation 
Potentials (GAP)

Linear Models:

Message-passing Atomic 
Cluster Expansion (MACE)



• total energy can be written as a sum of atomic energies:

Central Concepts in MLIPs: Locality of Quantum Mechanics

+ + + …𝜀1 𝜀2

𝜀3

Sort-range ML models rely on energy decomposition and locality:

𝐸𝑡𝑜𝑡 = 

𝑖

𝜀𝑖



• total energy can be written as a sum of atomic energies:

• atomic energies are a function of local environment (within a cutoff)

𝐸𝑡𝑜𝑡 = 

𝑖

𝜀𝑖

Central Concepts in MLIPs: Locality of Quantum Mechanics

+ + + …𝜀1 𝜀2

𝜀3

Sort-range ML models rely on energy decomposition and locality:

𝜀𝑖 = 𝜀𝑖(𝑟 < 𝑅𝑐𝑢𝑡)



• atomic energies are 'base-lined' to isolated atom energies

Central Concepts in MLIPs: Isolated energies

+ + + …𝜀1 𝜀2

𝜀3

ǁ𝜀𝑖 = 𝜀𝑖 − 𝜀𝑠
0

𝜀𝐶
0 𝜀𝑂

0

This ensures transferability across chemical compounds and a physically 
meaningful baseline in the absence of data for chemical reactions.



• forces are derivatives of total energy:

Central Concept in MLIPs: Calculating forces 

𝐹𝑖 =
𝜕𝐸𝑡𝑜𝑡

𝜕𝑟𝑖
= 

𝑖

𝜕𝜀𝑖

𝜕𝑟𝑖
+ 

𝑗≠𝑖

𝜕𝜀𝑗

𝜕𝑟𝑖

𝜀𝑖

𝜀𝑗

𝐹𝑖 = 

𝑖

𝜕𝜀𝑖

𝜕𝑟𝑖
(𝑟 < 𝑅𝑐𝑢𝑡) + 

𝑗≠𝑖

𝜕𝜀𝑗

𝜕𝑟𝑖
(𝑟 < 2𝑅𝑐𝑢𝑡)

This ensures: 

• energy conservation

• force equivariance

• extends effective interaction



Representation and Atomic Descriptors

Properties

• symmetry: translational, 
rotational, permutational

• smoothness

• completeness

• correlation order (2, 3, 4-body)

long-range
elements

bi-spectrum

Use Atomic Descriptors to represent Structure/Geometry

Large and growing family tree of atomic descriptors!

Atomic 
Descriptors

𝒑𝒊 =  𝑷(𝒙𝒊) 



Descriptor Symmetries: Permutation, Rotation, Translation

Permutation is a discrete 
symmetry of the energy!

Descriptors should be 
Invariant to Permutations:

𝑷(𝒙𝒊)  =  𝑷(𝒙𝝈(𝒊))

PERMUTATION

TRANSLATION

ROTATION
Translation is a continuous 
symmetry of the energy!

Infinitely many environments 
map to the same energy!

Difficult to `learn`, our descriptors 
require Translational 
Symmetry: 

𝑷(𝒙𝒊)  =  𝑷(𝒙𝒊 + 𝑻)

Rotation is also a 
continuous symmetry of the 
energy!

Descriptors should be 
Invariant to Rotations:

𝑷(𝒙𝒊)  =  𝑷(𝒙𝒊 × 𝑹)



Rotational Equivariance

What about properties that do 
change with rotations?

 

E.g. Forces, Dipole vectors rotate 
with the coordinate frame!

We want to avoid learning the 
transformation, instead we can 
make atomic descriptors 
Equivariant with Rotations:

𝑷(𝒙𝒊 × 𝑹)  =  𝑷(𝒙𝒊) × 𝑹

×  𝑹𝒙𝒚

ROTATION



Let's define a rotated coordinate system (i.e. Rotate molecule in Ovito): 

Energy is rotationally invariant:
𝑥′ = 𝑅𝑥

𝐸 𝑥 = 𝐸(𝑥′)

Question: can we fit equivariant forces with an invariant MLIP? 



Let's define a rotated coordinate system (i.e. Rotate molecule in Ovito): 

Energy is rotationally invariant:

Forces in the original and rotated frame:

The relation between the forces:

YES! If we obtain forces as the gradient of an invariant energy, we ensure they are 
equivariant! This will work for all vectors that can be expressed as gradients of a scalar field. 

𝜕𝐸(𝑥)

𝜕𝑥
=

𝜕𝐸(𝑥)

𝜕𝑥′

𝜕𝑥′

𝜕𝑥
=

𝜕𝐸(𝑥′)

𝜕𝑥′
𝑅

𝑥′ = 𝑅𝑥

𝐹 𝑥 = −
𝜕𝐸(𝑥)

𝜕𝑥
𝐹 𝑥′ = −

𝜕𝐸(𝑥′)

𝜕𝑥′

𝐸 𝑥 = 𝐸(𝑥′)

𝐹 𝑥 = 𝑅𝐹(𝑥′)

Question: can we fit equivariant forces with an invariant MLIP? 



Other Properties of a 'Good' Descriptor: Completeness

Descriptor Space ≫ Geometry Space

• many 𝑃 do not map onto real 𝑥𝑖

• all 𝑥𝑖 have to map onto a 𝑃

• different 𝑥𝑖  must map onto different 𝑃



Other Properties of a 'Good' Descriptor: Smoothness

descriptors need to change 
smoothly with geometry:

energy is smooth!

so should their arbitrary derivatives:

forces, Hessians are smooth!

small change in real space

small change in descriptor space

𝜹𝒙𝒊

𝜹𝑷



The total energy must be conserved:

Which means its time derivative must zero:

It follows that forces must obtained as the gradient of the total energy:

𝐸 =
1

2
𝑚𝑣2 + 𝑈 = 𝑐𝑜𝑛𝑠𝑡

Forces and energy conservation

𝑑𝐸

𝑑𝑡
= 𝑚𝑣 ∙

𝑑𝑣

𝑑𝑡
+

𝑑𝑈

𝑑𝑡
= 𝐹 ∙ 𝑣 +

𝜕𝑈

𝜕𝑥
∙

𝑑𝑥

𝑑𝑡
= 𝐹 ∙ 𝑣 +

𝜕𝑈

𝜕𝑟
∙ 𝑣 =  0

𝐹 = −
𝜕𝑈

𝜕𝑟



Examples: SOAP

𝜌𝑖 𝒓 = 

𝑗

exp
− 𝒓 − 𝒓𝑖𝑗

2

2𝜎𝑎𝑡𝑜𝑚
2 𝑓𝑐𝑢𝑡( 𝑟𝑖𝑗 < 𝑅𝑐𝑢𝑡)

Atomic density centered on atom 𝑖:
➢ permutational invariance

➢ translational invariance

𝜌𝑖𝛼 𝒓 = 

𝑛𝑙𝑚

𝑐𝑛𝑙𝑚
𝑖𝛼 𝑅𝑛 𝑟 𝑌𝑙𝑚( Ƹ𝑟)

Expand into radial / angular basis:

Power spectrum (the ’feature’ vector):

𝑃 = 𝑝𝑛𝑛′𝑙
𝑖 =

1

2𝑙 + 1


𝑚

𝑐𝑛𝑙𝑚
𝑖 𝑐𝑛′𝑙𝑚

𝑖
➢ rotational invariance



SOAP is a 3-body Descriptor

3-body Degeneracy:

Two different environments (4 neighbors): same SOAP

SOAP is incomplete!

SN Pozdnyakov, MJ Willatt, AP Bartók, C Ortner, G Csányi, 

and M Ceriotti PRL 125, 166001, 2020

body order  minimum 
neighborhood 
degeneracy!

4-body: minimum 7 
neighbors proven! 

ACE: arbitrary body-
order expansion!



Example: ACE - Body-ordered Descriptors

Atomic Cluster Expansion (ACE) as a systematic approach:

One–particle basis, atom-centred (translational invariance)

                         𝜑𝑛𝑙𝑚,𝑧𝑖𝑧𝑗
𝒓 =  𝑅𝑛𝑙,𝑧𝑖𝑧𝑗

𝑟𝑗𝑖 𝑌𝑙
𝑚(ො𝒓) 

Evaluate for each neighbour and sum (permutation invariance) 

Radial Angular

Phys. Rev. B 100, 

249901 (2019)

(2-body)

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.249901
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.249901


ACE: Systematic Body-ordered Expansion

Construct the product basis (𝜈 + 1 body terms):

 

(𝜈 + 1 body)

Symmetrize the product atomic-basis using the 

Clebsch–Gordan coefficients (rotational invariance)

 
Phys. Rev. B 100, 

249901 (2019)

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.249901
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.249901


Linear ACE

𝐿 = ∑
𝑗

∥ 𝐸(𝑋𝑗) − 𝐁(𝑋𝑗)𝑇𝐰 ∥2

ACE inspired from cluster-expansions of the energy function:

The problem becomes linear:

ACE is a precursor to MACE

... and we know how to solve it:



Dealing with chemical species: embedding

From categorical space to continuous space

Embedding vs one-hot encoding representations

4-Dimensional Embedding
 - dense, low-dimensional representations of data
 - each word (e.g., "cat," "mat," "on") is represented by a 4-
dimensional vector with learned values

One-Hot Encoding
 - categorical data as binary vector
 - each word is represented by a vector where:

• One position is "1" (indicating the word).
• All others are "0."
"the" → [0, 0, 0, 0, 1]
"cat" → [1, 0, 0, 0, 0]

 - high dimensionality: one vector per word
 - no notion of similarity between "cat" and "dog."

MACE starts with one-hot encoding and learns an embedding
O           ...               C      B     Be    Li    He    H



MPNN+ACE: MACE

Molecules 
are graphs

• each node is an atom

• messages are 
interactions between 
neighbor atoms

• MACE uses ACE 
basis as initial 
features

higher body-order descriptors

predict: 
Energy, 
Forces



repeat Interaction + product

Atom’s chemical 
species‘Embedding’

How the model sees the 
data

Species one-hot

radial embedding Ylm’s (angular embedding)

graph ‘edge’

Node embedding

‘Interaction’
Pooling information from 

neighbours

radial MLP

One-particle basis ‘conv_tp’

Neighbour sum + linear

linear

‘Product’
Form powers of features, 

for higher body order

Product

Node features 0 (n_node, k) edge features (n_edge, 8) edge attributes (n_edge, (ell+1)̂ 2)

update

readout

Node features 1 (n_node, k)

Node energies

edge features (n_edge, 8) edge attributes (n_edge, (ell+1)̂ 2)



1. Embeddings: initializing the graph

Computed once in the 
beginning.

For each atom/node 
expand distances/ angles 
into radial/angular basis.

Encode species one-hot 
and project into a 
learnable embedding.

Important hypers:

• 𝑅𝑐𝑢𝑡 (r_max)

• 𝐿𝑚𝑎𝑥 (max_ell)

• 𝑁𝑚𝑎𝑥 
(num_radial_basis)



2. Interaction: pooling across neighbours

Updated every time the model 
evaluates the interaction layer 
(𝑆 times)

The one-particle basis (𝜙) is 
constructed using e3nn, and 
unlike in ACE, it is equivariant 
(there are 𝜂1 ways to construct 
equivariances)

The atomic basis (A) is obtained 
by pooling over neighbors 
(permutational invariance)

Everything is multiplied by 
additional learnable weights

Important hypers:

• number of interactions 𝑆

• 𝑘 (number of channels)



3. Product: updating the node features

Updated every time the model evaluates 
the product layer (𝑆 times)

The atomic basis is tensor-multiplied with 
itself to form the product basis (main 
difference to NequIP: short-cut to obtaining 
higher body orders with fewer layers)

The fully symmetric basis (B) is 
constructed by contracting the atomic 
basis (A) using e3nn. There are 𝜂𝜈 ways 
to achieve this.

Finally, the message is obtained by 
multiplying with learnable weights and the 
node feature is updated.

Important hypers:

• number of interactions 𝑆

• 𝑘 (number of channels)

• 𝐿𝑚𝑎𝑥 (maximum equivariance):

32x1e+32x1o:

32 invariant and

32 equivariant channels 
𝑘 × (𝑌00, 𝑌1,−1, 𝑌1,0, 𝑌1,+1)

• 𝜈 correlation order



4. Readout from each layer

Total field-of view:

Total body-order (within the 
first )

𝑅𝑐𝑢𝑡 ×  𝑆

𝜈 + 1 ×  𝑆 + 1
Forces obtained via autodiff. Loss in each batch:



Training the Model: Minimizing the Loss

𝑝1

𝐹1

𝐹 (𝑝1)

𝐹1-𝐹 (𝑝1)

𝑝2

𝐹2

𝐹 (𝑝2)

𝐹2-𝐹 (𝑝2)

𝑝3

𝐹3

𝐹 (𝑝3)

𝐹3-𝐹 (𝑝3)

Data can be different molecules, or different 
geometries or both ...Input: atomic environments 𝑝

Output: observables 𝐹(𝑝) 

Learning: 

minimize loss on train set {𝑝, 𝐹(𝑝)} 

to determine 𝑤𝑖𝑗 etc

ℒ = 

𝑛=1

𝑁𝑑𝑎𝑡𝑎

𝐹𝑛 − 𝐹(𝑝𝑛) 2



+Salt:

•   6 atomic species: add Li, P, F (quadratic scaling)

•   charged long-range effects (~1/𝑟)

Electrolyte-Interface

LP57 solvent: 33% EC : 67% EMC

• simple GAP model on total energies

• 3 atomic species: H, C, O

• neutral molecules (~1/𝑟3)

Li-ion battery

Case study: MLIP for an organic solvent



*

*

/ /

• training data type: molecular clusters

• Neural Network + long-range

• we will fit a MACE model on a subset of 
this data

Case study: MLIP for an organic solvent

monomers
dimers

trimers

4-mers

5-mers
6-mers



Intra-/Inter- Decomposition as a Test

Gen10

Gen11

EtotalE1
intra E2

intra Einter

+ =

Intra/Inter test:

• split liquid configs into molecular 

• recompute molecules (same 

geometry) in vacuum: intra 

contributions

• compute inter- as difference 

between total and intra- 

𝐿 = 𝐹𝑡𝑜𝑡𝑎𝑙
𝐷𝐹𝑇 − 𝐹𝑡𝑜𝑡𝑎𝑙

𝑀𝐿 2

𝐿 = 𝐹𝑖𝑛𝑡𝑟𝑎
𝐷𝐹𝑇 − 𝐹𝑖𝑛𝑡𝑟𝑎

𝑀𝐿 + 𝐹𝑖𝑛𝑡𝑒𝑟
𝐷𝐹𝑇 − 𝐹𝑖𝑛𝑡𝑒𝑟

𝑀𝐿 2

dominates loss drives dynamics



Trans-/Rot-/Vib- Decomposition of Forces

The funct ion also calculates root mean square errors (RM SE) and relat ive RM SEs

(RRM SE)

3.2.2 Approach I I

The second approach has the advantage that it does not require addit ional computat ion on

the isolated molecules, but it only performs an I ntra/ I nter split for f or ces but not for ener gy

and vi r i al . The method can be summarized in the following steps:

1. Ident ify molecules (labeled j).

2. Within each molecule j sum over all atomic forces (labeled k) to obtain the t ranslat ional

component:

𝐹 t rans
𝑗 = ∑

𝑘∈𝑗

𝑓𝑘

3. Redistribute the molecular t ranslat ional force onto individual atoms (labeled i) to obtain

the atomic t ranslat ional contribut ions:

𝑓t rans
𝑖 =

𝑚𝑖

𝑀 𝑗

𝐹 t rans
𝑗

9

The funct ion also calculates root mean square errors (RM SE) and relat ive RM SEs

(RRM SE)

3.2.2 Approach I I

The second approach has the advantage that it does not require addit ional computat ion on

the isolated molecules, but it only performs an I ntra/ I nter split for f or ces but not for ener gy

and vi r i al . The method can be summarized in the following steps:

1. Ident ify molecules (labeled j).

2. Within each molecule j sum over all atomic forces (labeled k) to obtain the translat ional

component :

𝐹 t rans
𝑗 = ∑

𝑘∈𝑗

𝑓𝑘

3. Redistribute the molecular translational force onto individual atoms (labeled i) to obtain

the atomic translat ional contribut ions:

𝑓t rans
𝑖 =

𝑚𝑖

𝑀 𝑗

𝐹 t rans
𝑗

9

Translational forces:

(per molecule)

(per atom)

Rotational forces:

(per molecule)

(per atom)

Vibrational forces:

(per atom)
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Lecture Outline

• Iterative Training: improving stability and accuracy

• Error estimation: committee models

• Active learning: unsupervised iterative training

• Foundational models: out-of-the-box MLIPs

• Fine-tuning on new data and new labels



MACE-MP-0: a First Generation Foundational Model 

21st June 2024Ioan-Bogdan Magdău                Warwick Battery Days 2024

Batatia, I et al, arXiv preprint, arXiv:2401.00096 (2023)

to fully appreciate 
foundational models

let's first look at how 
we used to fit MLIPs 
a few years ago

these concepts: 
iterative training, 
active learning will 
remain relevant, 
hopefully needed 
less often



Stability and Accuracy in Molecular Dynamics

Stability isn't everything, 
but without it we can't 
do anything

Most of us are interested 
in applications that 
involve MD beyond 
AIMD.

Earlier models!

Sometimes it can take 1 mil steps 
before the simulation fails!



Test Error, MD Stability and MD Accuracy

Train   TestTrue

PES

MLIP

PES

Breaks integrator

MD explodes 

1. Root Mean Square Errors (RMSE)

low test errors do no guarantee stability!

2. MD Stable Potentials

stability does not guarantee MD accuracy!

3. Prediction accuracy: thermodynamics 
and kinetics

Goal: correct probability distribution!
 difficult to check



Test Error, MD Stability and MD Accuracy

1. Root Mean Square Errors (RMSE)

low test errors do no guarantee stability!

2. MD Stable Potentials

stability does not guarantee MD accuracy!

3. Prediction accuracy: thermodynamics 
and kinetics

Goal: correct probability distribution!
 difficult to check

MLIP

PES

Does not break 
integrator

MD is stable

• Accurate Kinetics 𝐴(𝑡) ∙ 𝐴(0)

• Accurate Thermodynamics 𝐴

• Stable MD 𝜏𝑠𝑡𝑎𝑏 → ∞

• Low Test-Errors: 

Predetermined Tests



+Salt:

•   6 atomic species: add Li, P, F (quadratic scaling)

•   charged long-range effects (~1/𝑟)

Electrolyte-Interface

LP57 solvent: 33% EC : 67% EMC

• simple GAP model on total energies

• 3 atomic species: H, C, O

• neutral molecules (~1/𝑟3)

Li-ion battery

GAP Potential for the Organic Electrolyte Solvent



Training on Fixed / Pre-generated Data

1.08 g/cm3 

Target Conditions:

33% EC: 66% EMC

~1.08 g/cm3 at 300K

OPLS sampling: decorrelated samples, low computational cost

DFT calculations PBE+G06 12-molecule configurations 

Wide range of densities and temperatures, maintaining diffusive behavior



• well-behaved molecules

• liquid density collapse

• bubbles formation

stable NVE/NVT

The Density Problem: Bubble Formation

• Coverage of phase space?

• Transferability across molecular compositions?

• Difference in scale and dimensionality of Intra- / Inter-? 



Iterative Training: model learns from mistakes



Improving the models – Iterative Training

Train   Test

MD failure

gen 0

MLIP gen 0

MLIP gen 1

Refit & 

repeat

Reference PES
starting 

Training Set

Fit ML 
model

Run MD with 
ML model

Select failed 
config

Recompute REF 
and extend 
Training Set

Iterative Training



Iterative Training

50 OPLS configs

Iterations with 12-molecules 
(accessible to ab initio)

Gen 0 Gen 1 Gen 4

Multiple Temperatures: 500K ➔ 1200K (extrapolation)

Multiple Pressure: 1bar ➔ 25kbar

Proxy for folding back: density instabilities

Gen 4: 50 OPLS + 35 GAP-MD configs: stable densities!



Testing on Larger System (48 molecules)

• GAP densities 
stable at all 
temperatures!

• Densities not well 
reproduced at 400K

• Same density at 
400K and 500K

Target Composition (33:67)
GAP (5) OPLS



Transferability to other Molecular Compositions

EC

EMC

Gen 5

EC:EMC   33:66

0:100 66:33 100:0

Target Composition

Other Compositions

poor transferability 
between compositions!



Transferability to other Molecular Compositions

Gen 5 Gen 10

Compositions +

Ite
rative Training

better 
convergence 
at the target 
composition!

stable 
densities all 
compositions!

persisting 
unphysical 
density order

EC

EMC

EC:EMC   33:66

0:100 66:33 100:0

Target Composition

Other Compositions



Volume Scan Test/Train: Pure Inter-molecular Contributions

Scan inter-molecular PES:

➢ thermalized configurations from GAP-MD

➢ energy binding curve with frozen molecules

Volume Scan MoleculesRepulsion



Volume Scan Test/Train: Pure Inter-molecular Contributions

33:66 66:33

strong 
repulsion

single 
molecules

GAP

• describes bottom of the well

• stable densities, but values 
too high
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33:66 66:33
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too high

GAP + Single Molecules (SM)

• reproduces the free molecule limit

• density values still too high



Volume Scan Test/Train: Pure Inter-molecular Contributions

33:66 66:33

GAP

• describes bottom of the well

• stable densities, but values 
too high

GAP + Single Molecules (SM)

• reproduces the free molecule limit

• density values still too high

GAP + SM + Volume Scans (VS)

• reproduces the entire E(V) curve

• captures the strong repulsion limit

• still some non-smooth behavior

strong 
repulsion

single 
molecules



• 3x NVT 20ps 
simulations, 500 K, 
640 atoms, 
EC:EMC (3:7 M)

• each AIMD 0.5 M 
core-hours

• each ML-MD 250 
core-hours: 2000x

2 Postdoc Years: GAP-MD vs AIMD on PBE-D3

Pressure Distribution Equation of State (EoS) Energy Distribution Specific Heat

𝜌 = 1.08 𝑔/𝑐𝑚3

𝜌 = 0.95 𝑔/𝑐𝑚3

𝜌 = 0.82 𝑔/𝑐𝑚3

Inter-molecular RDFs Vibrational Density of States (VDoS)

Magdău et al, NPJ 2023



Iterative Training: How to best choose 'failed' configs?

In practice, hard to know true error, because it 
can be very expensive to compute!

Iterative Training: most of 
the human cost in 
developing MLIPs

Which configs to add back to training?original 
Training Set

Fit ML 
model

Run MD with 
ML model

Select Failed 
Geometries

Compute DFT 
and extend 
Training Set

?

Active Learning is a way to 
automate the Iterative Training by 
choosing new configs automatically, 
for example based on true error.

X

X

X

?
X



Linear/Kernel models:

We can use Bayesian Regression to 

compute both mean and variance:

Which configs to add back to training?

Uncertainty Prediction – Bayesian View

A good read: https://towardsdatascience.com/introduction-to-bayesian-linear-regression-e66e60791ea7



In practice, analytical error 

estimation can be very expensive

Use committee models: 'basket' 

of models with different solutions

Advantage: committees work for 

highly-nonlinear Neural Networks 

(NN) as well: MACE

committee 
of models

mean / 

average
model

Uncertainty Prediction – Committees



starting 
Training Set

Fit ML 
model

Run MD with 
ML committee

Select 
disagreement

Recompute REF 
and extend 
Training Set

Train   Test

Committee 

disagreement

gen 0

Reference PES

MLIP gen 0

committee

Active Learning

(unsupervised)

Uncertainty Prediction guides Active Learning

In practice, hard to know true error, assume it is predicted by the 
committee disagreement



starting 
Training Set

Fit ML 
model

Run MD with 
ML committee

Select 
disagreement

Recompute REF 
and extend 
Training Set

Train   Test

Committee 

disagreement

gen 0

Reference PES

MLIP gen 0

committee
Refit & 

repeat

MLIP gen 1

committee

Active Learning

(unsupervised)

Uncertainty Prediction guides Active Learning

In practice, hard to know true error, assume it is predicted by the 
committee disagreement



Neural Network (MACE) Committee Models

➢ different training seeds → solutions

➢ different representative data subsets

➢ slightly different hyperparameters

MACE result on EC/EMC cluster configs 

labeled with XTB (semiempirical/fast) 

Shows convincing model disagreement 

(uncertainty) when true error explodes

Good correlation between uncertainty 

and true error!

more 
diverse

Strategies for building NN 

committees: 



Beyond Active Learning

Often it can take a long time until we find a failed config (useful new data). This is can 

amount to a lot of wasted computing time.

This problem becomes more pronounced as the models get better. Can we find a way to 

speed up the failure?

time to failure
new useful config



Hyper-active Learning (HAL)

HAL uses the uncertainty 

prediction to bias the potential 

energy surface (PES)

This pushes the simulation to 
areas of high uncertainty



Hyper-active Learning

HAL uses the uncertainty 

prediction to bias the potential 

energy surface (PES)

This pushes the simulation to 
areas of high uncertainty

HAL vs simple Active Learning (AL)

HAL requires fewer iterative training cycles

HAL requires orders of magnitude less dynamics 



The Advent of Foundational Models

Training a MLIP for every 
application/system is not 
sustainable!

Big Question:

Can we train one big 
foundational model that 
works for all systems?

GAP MACE

In
te

r-
e
n

e
rg

y
In

te
r-

fo
rc

e
s

Message-passing Atomic Cluster 
Expansion (MACE)

• species embedding → 
constant scaling with 
elements, transferability

• body-ordered expansion → 
accuracy, large capacity

• regularity/smoothness → 
stable MD

• availability of Big Data

Innovations



MACE-MP-0: a First Generation Foundational Model 

• Materials Project (Berkeley Lab): 89 
elements, ~150K materials (90% < 70 atoms)

• MPtraj: ~1.5M configs + structural relaxations

• XC-functional: PBE+U

• MACE: trained on MPtraj, no iterative training

https://next-gen.materialsproject.org/



21st June 2024Ioan-Bogdan Magdău                Warwick Battery Days 2024

Batatia, I et al, arXiv preprint, arXiv:2401.00096 (2023)

• MD-stable out-of-box

• New frontiers in molecular modelling

• vast range of applications: organic, 
inorganic, interfaces, full devices

The Emergence of Foundational Models



Now possible to compute with ab initio accuracy!

IR spectra of water NaCl dissolution
Nudge-Elastic-Band

multistep catalysis on surfaces 

Free energy landscape: CO2 in MOF

Solvent mixing: ~ns timescaleFormation of SEI in Li-ion battery

Million atom perovskite



Back to the Electrolyte: stability

A . Flowing elect roly t e/ solvent (500 K N PT ) B . I nt r a/ int er er r or s for elect r oly t e

C. Volume scans

D . Ful l bat t er y (500 K N V T ) E. B eginning of SEI
EMC

EMC-2H

EMC-1H

EC

EC-2H

CO2 H2O

F. Pr oduct s over t ime

EC/EMC LiPF6, 500K NPT, MACE-MP-0 (PBE+D3)
EC/EMC, 500K NPT, bespoke MACE model (PBE+D2)

Out-of-box MACE-MP-0

no iterative training

simulation is stable at 500K, NPT, 150ps:

• molecules remain intact!

• density is stable!

• electrolyte is flowing, exploring phase-
space



A . Flowing elect r oly t e/ solvent (500 K N PT ) B . I nt r a/ int er er r or s for elect r oly t e

C. Volume scans

D . Ful l bat t er y (500 K N V T ) E. B eginning of SEI
EMC

EMC-2H

EMC-1H

EC

EC-2H

CO2 H2O

F. Pr oduct s over t ime

B. Intra-Inter errors

• independent PBE test set

• 0.1-2.5 g/cm3, all EC/EMC 
LiPF6 compositions

• largest errors at unphysically 
high-density 

C. Rigid-molec. Volume Scans

• neat solvent

• full electrolyte (incl. ions)

• surprisingly good 
performance

• notice the potential 
reproduces the 1/r behavior 
without formal charges

Back to the Electrolyte: Accuracy



Full Battery 'baby' Model: can we Break the Simulation?

Cu | H-capped graphite+Li | EC/EMC+LiPF6 | NMC+Li

Simulating the Li-ion battery 
environments

• ~ 1800 atoms

• 9 chemical elements

• 4 different materials: metal Copper, 
Li-loaded graphite, EC/EMC + LiPF6, 
Li-loaded (partial) NMC

• 4 different chemical interfaces

all local atomic environments are 
represented to some extend in MPtraj

Will this simulation be stable with 
the out-of-the-box model?

This is a difficult test for MACE-MP-O,

 it is not a battery!

500K, NVT, MACE-MP-0+D3, 170ps



MLIP performance:

~1000s atoms

~100ps a day/GPU

DFT cost/performance

(rough estimate, linear-scaling DFT 
can certainly do much better)

this system: ~6000 electrons

~single point 2 day / 20 CPUs

Out-of-box MACE-MP-0

1800 atoms, simulation is stable at 500K, NVT, 170ps

Full Battery 'baby' Model



A . Flowing elect roly t e/ solvent (500 K N PT ) B . I nt r a/ int er er r or s for elect r oly t e

C. Volume scans

D . Ful l bat t er y (500 K N V T ) E. B eginning of SEI
EMC

EMC-2H

EMC-1H

EC

EC-2H

CO2 H2O

F. Pr oduct s over t ime

A . Flowing elect roly t e/ solvent (500 K N PT ) B . I nt r a/ int er er r or s for elect r oly t e

C. Volume scans

D . Ful l bat t er y (500 K N V T ) E. B eginning of SEI
EMC

EMC-2H

EMC-1H

EC

EC-2H

CO2 H2O

F. Pr oduct s over t ime

New Compounds in the Electrolyte / Interface

• bare NMC (no H): CO2 forming, some EC, 
EMC become radical

• hydrogenated NMC (surface O atoms): less 
CO2, more H2O forming, mostly EMC become 
radical

Final MD snapshot

• gray: products of reacted 
solvent molecules

• red: oxygen atoms 
originating from cathode, 
forming new CO2 and 
H2O molecules

• solvent molecules 
chemisorbed on cathode 
surface

A . Flowing elect roly t e/ solvent (500 K N PT ) B . I nt r a/ int er er r or s for elect r oly t e

C. Volume scans

D . Ful l bat t er y (500 K N V T ) E. B eginning of SEI
EMC

EMC-2H

EMC-1H

EC

EC-2H

CO2 H2O

F. Pr oduct s over t ime

Beginning of SEI Formation? Is the Science Right?



Fine Tuning: Pretrain on Big Data, Transfer to Small Data 

❖ working assumption: 
parts of the model are 
transferable (feature 
construction)

❖ pretrain model on 
available large dataset

❖ fine-tune on small 
dataset for specific 
application



Fine Tuning Strategies

❖ freeze parts of the 
network (same 
features)

❖ unfreeze all 
network: start 
solution is closer to 
minimum on Loss 
Landscape

❖multi-head: one 
head is the old data 
(keeps weights 
constrained), new 
head is new data

Loss Landscape



Fine Tuning in MLIPs: Early Days

Harveen Kaur, et al, arXiv preprint arXiv:2405.20217 (2024) https://github.com/venkatkapil24/fine-tuning-MLPs-ice-polymorphs

❖out-of-train systems (here ice Ih), same level of 

theory (PBE)

❖new level of theory

❖both out-of-train system and new level of theory 

(RPA, revPBE-D3)
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