
Introduction to Deep
Learning

Keith T. Butler

mdi-group.github.io @keeeto2000 k.t.butler@ucl.ac.uk

What we will cover

• The difference between deep and classical learning

• The concept of representation learning

• The structure of a simple multi-layer perceptron

• How to write an MLP in PyTorch

• How a NN learns – optimisation and backpropagation

• The power of inductive bias

• The structure of a simple convolutional neural network

Classical/deep methods

• Classical: linear regression, trees etc..

• Deep: neural network type models

Deep learning as representation learning

“Hand-crafted” features

Unstructured data

Classical ML

Deep learning

Deep learning as
representation learning
• Traditional ML relies heavily on

feature engineering before
learning

• Deep learning learns the features
as well as the relational model of
interest

• Deep learning requires less
manual input; but more data

• Number of
eyes

• Whiskers
• Legs
• Fur
• Scales

• Number of
eyes

• Whiskers
• Legs
• Fur
• Scales

• Number of
eyes

• Whiskers
• Legs
• Fur
• Scales

Classical ML

Classification model

Deep learning

cat

Neural networks

• Early NN

• Originally a device

• Intended for binary
classification

• Produces a single output from
a matrix of inputs, weights
and biases

Neural networks

• Single layer

• Minsky and Papert showed
they could not solve non-
linear classification

Change of function

Neural networks

• Back propagation

• Now gradients could be
used to minimise error

• Modifications back
propagate through the
network using the chain
rule

Deep neural networks: Multi layer perceptron

Input layer Output layer

Hidden layers

Dense layers

• Also called fully connected layers

𝑦 = 𝑔 𝑧

𝑧 = 𝒘𝑇 . 𝒙 + 𝑏
𝑥

𝑥

𝑥

𝑦

Weights

Bias

Input signals

Output signal

Activation function

Activation function: Linear

• The simplest form of
activation function

Activation function: Sigmoid

• Vanishing gradient problem

• Secondly , its output isn’t zero
centered. It makes the gradient
updates go too far in different
directions. 0 < output < 1, and it
makes optimization harder.

• Sigmoids saturate and kill gradients.

• Sigmoids have slow convergence.

Activation function: Tanh
• Output is zero

centered

• Usually preferred to
sigmoid as it
converges better

• Still it suffers from
vanishing gradient
problem

Activation function: ReLU

• 6 times improvement
in convergence from
Tanh function

• Should only be used
within Hidden layers of
a neural network
model

Activation function: LeakyReLU
• Some ReLu gradients can

be fragile during training
and can die.

• Cause a weight update
which will makes it never
activate on any data
point again.

• ReLu could result in Dead
Neurons.

Writing a DNN in PyTorch

class MLP(nn.Module):

 def __init__(self, input_dim, output_dim):

 super().__init__()

 self.input_fc = nn.Linear(input_dim, 250)

 self.hidden_fc = nn.Linear(250, 100)

 self.output_fc = nn.Linear(100, output_dim)

 def forward(self, x):

 batch_size = x.shape[0]

 x = x.view(batch_size, -1)

 h_1 = F.relu(self.input_fc(x))

 h_2 = F.relu(self.hidden_fc(h_1))

 y_pred = self.output_fc(h_2)

 return y_pred, h_2

Go to notebook

Back Propagation
• Backprop

LOSS(L)

y[1] y[2] y[l]

dy[l]

dy[1] dy[2]

dw[1]
db[1]

dw[2]
db[2]

dw[l]
db[l]

y[0]

Notation:
dL/dy[l] => dy[l]

Optimisation Stochastic gradient descent

• Gradient descent – calculate the gradient of the loss of the entire set
with respect to parameters

• SGD – calculated per sample rather than on the entire batch
• Much quicker to calculate, but can lead to high variance

• Mini-batch SGD – calculate loss gradient on batches of set size
• Best of both worlds

Optimisation: Adaptive methods
• Some parameters update much more often than

others

• Therefore different learning rates can be appropriate
for different parameters

• Adagrad modifies the learning rate η at each time
step for every parameter based on the past gradients
computed for that parameter

𝜃𝑡 = 𝜃𝑡−1 −
𝜂

𝐺𝑡 + 𝜀
𝑔𝑡

New parameter

Old parameter

Sum of previous gradients

Current gradient

Optimisation: Adam

• Similar to Adagrad

• Add in information about the mean of the
momentum of previous steps too

• Works very well in most situations

𝜃𝑡 = 𝜃𝑡−1 −
𝜂

𝑣 + 𝜀
𝑚

New parameter

Old parameter

Variance of last n gradients

Mean of last n gradients

Building block: Adam optimizer

import torch.optim as optim

optimizer = optim.Adam(model.parameters())

criterion = nn.CrossEntropyLoss()

Building block – a training loop

Go to notebook

def train(model, iterator, optimizer, criterion, device):

 epoch_loss = 0

 epoch_acc = 0

 model.train()

 for (x, y) in tqdm(iterator, desc="Training", leave=False):

 x = x.to(device)

 y = y.to(device)

 optimizer.zero_grad()

 y_pred, _ = model(x)

 loss = criterion(y_pred, y)

 acc = calculate_accuracy(y_pred, y)

 loss.backward()

 optimizer.step()

 epoch_loss += loss.item()

 epoch_acc += acc.item()

 return epoch_loss / len(iterator), epoch_acc / len(iterator)

Convolutional Neural Nets: The power of
inductive bias

The inductive bias (also known as learning bias) of a learning algorithm
is the set of assumptions that the learner uses to predict outputs of
given inputs that it has not encountered.

The need for biases in learning generalizations, CBM-TR 5-110,
New Brunswick, New Jersey, USA: Rutgers University

Some pitfalls with MLPs for images

▪ No spatial awareness

▪ Parametric explosions

Early CNNs

▪ LeCun – restricting the number
of parameters in a NN leads to
better generalisation

▪ Also makes it possible to fit in
memory

▪ Originally trained for digit
recognition for the postal
service

Structure of a convolutional layer

▪ Kernel

▪ Pooling

▪ Activation

Convolution in action: Kernel

▪ Input + kernel -> activation map

Convolution in action: Padding

▪ Padding around the outside of images
▪ SAME: pad with zeros to make output.shape == input.shape

▪ VALID: no padding output.shape < input.shape

Convolution in action: Striding

▪ Controls how the filter slides across the image

Convolution in action: Pooling

▪ Use to compress between layers

3 1

5 1

7 2

0 9

8 2

4 3

4 9

1 1

5 9

8 9

Max Pool (2, 2)

Convolution in action: Putting it together

Input image – 1 channel

3 filters

Activation

function

Activations – 3 channels

Max

pooling

Output – 3 channels

reduced dimensions

A deep CNN

Conv + ReLU

Max Pool

(224, 224, 64)

(112, 112, 128)

(56, 56, 256)

(28, 28, 512)
(14, 14, 1024)

(w, h, c)

▪ VGG-16

Fully connected (dense) layer

Building blocks: Convolution block

import torch.nn as nn

self.conv1 = nn.Conv2d(in_channels=1,

 out_channels=6,

 kernel_size=5)

Go to notebook

import torch.nn.functional as F

x = self.conv1(x)

x = F.max_pool2d(x, kernel_size=2)

x = F.relu(x)

Graphs: A more flexible convolution

https://distill.pub/2021/understanding-gnns/

Key concepts

• Deep learning is a qualitatively different process to classical ML

• Deep learning generally requires more data than classical ML

• Deep learning relies on representation learning

• How to write and train a neural network in PyTorch

• Inductive bias allows us to construct more general models

• Inductive bias can allow us to use deep learning on smaller datasets
successfully

	Slide 1: Introduction to Deep Learning
	Slide 2: What we will cover
	Slide 3: Classical/deep methods
	Slide 4: Deep learning as representation learning
	Slide 5: Deep learning as representation learning
	Slide 6: Neural networks
	Slide 7: Neural networks
	Slide 8: Change of function
	Slide 9: Neural networks
	Slide 10: Deep neural networks: Multi layer perceptron
	Slide 11: Dense layers
	Slide 12: Activation function: Linear
	Slide 13: Activation function: Sigmoid
	Slide 14: Activation function: Tanh
	Slide 15: Activation function: ReLU
	Slide 16: Activation function: LeakyReLU
	Slide 17: Writing a DNN in PyTorch
	Slide 18: Back Propagation
	Slide 19: Optimisation Stochastic gradient descent
	Slide 20: Optimisation: Adaptive methods
	Slide 21: Optimisation: Adam
	Slide 22: Building block: Adam optimizer
	Slide 23: Building block – a training loop
	Slide 24: Convolutional Neural Nets: The power of inductive bias
	Slide 25: Some pitfalls with MLPs for images
	Slide 26: Early CNNs
	Slide 27: Structure of a convolutional layer
	Slide 28: Convolution in action: Kernel
	Slide 29: Convolution in action: Padding
	Slide 30: Convolution in action: Striding
	Slide 31: Convolution in action: Pooling
	Slide 32: Convolution in action: Putting it together
	Slide 33: A deep CNN
	Slide 34: Building blocks: Convolution block
	Slide 35: Graphs: A more flexible convolution
	Slide 36: Key concepts

