Introduction to Deep
Learning

Keith T. Butler

mdi-group.github.io @keeeto2000 k.t.butler@ucl.ac.uk

What we will cover

* The difference between deep and classical learning
* The concept of representation learning

* The structure of a simple multi-layer perceptron

* How to write an MLP in PyTorch

* How a NN learns — optimisation and backpropagation

* The power of inductive bias

* The structure of a simple convolutional neural network

Classical/deep methods

* Classical: linear regression, trees etc..
e Deep: neural network type models

Accuracy Deep NN

Speed Robustness

Performance

Simplicity Scaling Traditional ML

Interpretability Data

Deep learning as representation learning

l “Hand-crafted” features

Classical ML f(ﬂ?) =
eatarns - [(f(O)) =y

|

Unstructured data

Deep learning as
representation learning

e Traditional ML relies heavily on Deep learning Classical ML

feature engineering before - Number of

learning eyes
WHINGES

as well as the relational model of % ! el

* Deep learning learns the features Legs
Fur
Interest

* Deep learning requires less

manual input: but more data
put; Classification model

Neural networks

e Early NN
* Originally a device

* Intended for binary
classification

y=¢() wiz;+b) =p(w'x+Db)
* Produtes a single output from

a matrix of inputs, weights
and biases

Neural networks

Expanded Edition
 Single layer

* Minsky and Papert showed
they could not solve non-
linear classification

Perceptrons

Marvin L. Minsky
Seymour A. Papert

Change of function

(a)

y=¢() wizi+b)=p(w'x+Db)

(b)

1

g(x)

_/

—

Neural networks

* Back propagation

* Now gradients could be
used to minimise error

* Modifications back
propagate through the
network using the chain
rule

g(x)

(a) (b)
1 1
0 0

a\ TN N

C WX W W)

\ ‘.‘ ‘n‘ ’a" A i‘t\\‘\‘é ;f'fl?o ﬁ\:\\‘ /
WA QWAL NAVAY
(9 Vo raal iy
\) ;“’q“-‘."'r‘@‘\ ROV WY
SRR SO “CORAX

XN, XN I YNY

SRR
\r' \"\ J\‘ %/
AR AR
RN 20K
AL AR

=

/ " 4"{ :' ‘: “'v g
Ve A t“\‘ ?"‘f'fp:.k“:“‘\)
\ TN NN /]

TAAN
H/N\X

f‘\ ’|\ ¥, Y AT AL L)
VAR) 4
’.’3\"\# INAAX

Deep neural networks: Multi layer perceptron

\» 4:
\"/ll/ * ;ll k‘\\‘ﬁ fllzf ”
'? .‘.‘: :» & J m J:*’f Va‘.l.':ﬁ
:v A S s
'*u SRR If"'."‘%., :,;r.\:,: 3
X J‘» 9 t’b 1\‘: ’;(‘ “;‘
‘i&‘«\\ LR ﬁ‘z AR LR

rq A ,,’ f‘v \\ AN I
| !e a\\\' /N %‘«;M %‘\\.
\ TN

@), .

NN

Input layer Output layer

Hidden layers

Dense layers

* Also called fully connected layers

Activation function

y = fq(Z)

X

Output signal

y

Z = WT.x_I'b—Bias
|

Input signals

Weights

Activation function: Linear

* The simplest form of
activation function

10 -

—-10 -

-10

10

Activation function: Sigmoid

* Vanishing gradient problem

* Secondly, its output isn’t zero -

centered. It makes the gradient
updates go too far in different
directions. 0 < output < 1, and it
makes optimization harder.

0.75 -
0.50 -
0.25 -
0.00 -

-0.25 -
e Sigmoids saturate and kill gradients. .-

* Sigmoids have slow convergence. ~0.75 -

—1.00 - i
-10

Activation function: Tanh

* Output is zero

centered

e Usually preferred to
sigmoid as it 1.00 -
converges better 0.75 -

* Still it suffers from >0

vanishing gradient 2

0.00 -

problem
—-0.25 -

—0.50 -
—0.75 -

—1.00 - !
-10

Activation function: RelLU

* 6 times improvement
in convergence from
Tanh function

* Should only be used 0]
within Hidden layers of ol

a neural network
model

—-10

10

Activation function

 Some Relu gradients can
be fragile during training
and can die.

e Cause a weight update
which will makes it never
activate on any data
point again.

 ReLu could result in Dead
Neurons.

. LeakyRelLU

10 -

-10

10

Writing a DNN in PyTorch

class MLP (nn.Module) :

def init (self, input dim, output dim):

def

super (). init ()

self.input fc = nn.Linear (input dim, 250)

self.hidden fc = nn.Linear (250, 100)

self.output fc

nn.Linear (100, output dim)

forward(self, Xx):

batch size = x.shape[0]

X =
h 1
h 2

X

.view(batch size, -1)
F.relu(self.input fc(x))
F.relu(self.hidden fc(h 1))

y pred = self.output fc(h 2)

return y pred, h 2

Go to notebook

Back Propagation —
* Backprop dL/dy([l] => dy[l]

V{0l ‘ y[1]
dbl[1] db[2] db[I]
0«0+ 0~

dy([1] dy[2]

y[2]

y[l]

Optimisation Stochastic gradient descent

* Gradient descent — calculate the gradient of the loss of the entire set
with respect to parameters

* SGD — calculated per sample rather than on the entire batch
* Much quicker to calculate, but can lead to high variance

* Mini-batch SGD — calculate loss gradient on batches of set size
* Best of both worlds

Optimisation: Adaptive methods

* Some parameters update much more often than
others

* Therefore different learning rates can be appropriate
for different parameters

* Adagrad modifies the learning rate n at each time
step for every parameter based on the past gradients
computed for that parameter

Current gradient

Old parameter
New parameter \ /
- N
0 = 0r_1 9t

JG: + €
P

Sum of previous gradients

Optimisation: Adam

e Similar to Adagrad

e Add in information about the mean of the
momentum of previous steps too

* Works very well in most situations

Mean of last n gradients

Old parameter /
New parameter \

h |
thgt—l \/;_I_gm

/

Variance of last n gradients

Building block: Adam optimizer

import torch.optim as optim

optimizer = optim.Adam(model.parameters/())
criterion = nn.CrossEntropylLoss ()

Building block — a training loop

def train(model, iterator, optimizer, criterion,

epoch loss = 0
epoch acc = 0

model.train ()

for

return epoch loss / len(iterator), epoch acc / len(iterator)

(x, y) in tgdm(iterator, desc="Training",
X = xX.to(device)
y = y.to(device)

optimizer.zero grad()

y _pred, = model (x)
loss = criterion(y pred, vy)
acc = calculate accuracy(y pred, vy)

loss.backward()
optimizer.step ()

epoch loss += loss.item()
epoch _acc += acc.item()

device) :

leave=False) :

Go to notebook

Convolutional Neural Nets: The power of
inductive bias

The Need for Biases in Learning Generalizations

Tom M. Mitchell

The inductive bias (also known as learning bias) of a learning algorithm
is the set of assumptions that the learner uses to predict outputs of
given inputs that it has not encountered.

The need for biases in learning generalizations, CBM-TR 5-110,
New Brunswick, New Jersey, USA: Rutgers University

Some pitfalls with MLPs for images

= No spatial awareness

. . 1011 -
u Parametrlc exp|05|ons
109 -
E 107
T N
-
Q
E 105 =
©
| -
©
o 103 -
101 - Dense
Convolutional
0 100 200 300 400 500

Image size

Early CNNs

= LeCun - restricting the number
of parameters in a NN leads to
better generalisation

= Also makes it possible to fit in
memory

= Originally trained for digit
recognition for the postal
service

Generalization and Network
Design Strategies
Y. le Cun

Department of Computer Science
University of Toronto

Technical Report CRG-TR-89-4

June 1989
100 LI B B L 1 1
: | = ! =T JInetl
5 00 [{lne2
o - Jdlnet3
i) - Al =————
5 80 [| pet4
£ b lpess
= -1
S 70 K
R
60
10] training epochs
4x4 Aq | 4x4x4
m 8x8x2 8x8x2
A\
16x16 16x16

Figure 5 two network architectures with shared weights: Net-4 and Net-5

Structure of a convolutional layer

= Kernel
* Pooling
= Activation

Convolution in action: Kernel

* Input + kernel -> activation map

Extract Sum

A 4 X
1/1/4[(315 1143 1/0]-1 1/0]-3 8l|-2
5/12111l5 5|2 X 2|02 == |10 5
4|1 712 1|2 4712 101 410]1-2
60|98

Kernel, 3x3
Output, 5x5

Input, 7Xx7

Convolution in action: Padding

* Padding around the outside of images

= SAME: pad with zeros to make output.shape == input.shape
= VALID: no padding output.shape < input.shape

o/lofofofo]ofofo]o:
0 0
0 0:
10 0!

mp O 0! mmp
i) 0!

Padding 7 0 Convolve
10 0!
to]o]ofofofo[o[o]o:

Input, 7x7 Output, 7x7

Input padded with 0, 9x9

Convolution in action: Striding

= Controls how the filter slides across the image

Stride = 2
N
L e W —F,+ 2P
= { output width = S
-
Convolve
Output, 3x3
: H — Fp + 2P
output height = AT |

Input, 7x7 Sh

Convolution in action: Pooling

= Use to compress between layers

Max Pool (2, 2)

2 e
O -

Convolution in action: Putting it together

Input image — 1 channel

L
i
L

3 filters

Activation
function

Activations — 3 channels

|

]

Max
pooling

Output — 3 channels
reduced dimensions

i

(224, 224, 64)

A deep CNN

(112, 112, 128)

(56, 56, 256) " VGG-16

(28, 28, 512)

(14, 14, 1024)

_ Max Pool

. Fully connected (dense) layer

Building blocks: Convolution block

import torch.nn as nn

self.convl = nn.ConvZ2d(in channels=1,
out channels=o0,
kernel size=5)

Go to notebook

import torch.nn.functional as F

X = self.convl (x)
= F.max pool2d(x, kernel size=2)
x = F.relu(x)

X
I

Graphs: A more flexible convolution

https://distill.pub/2021/understanding-gnns/

Key concepts

* Deep learning is a qualitatively different process to classical ML
* Deep learning generally requires more data than classical ML

* Deep learning relies on representation learning
* How to write and train a neural network in PyTorch
* Inductive bias allows us to construct more general models

* Inductive bias can allow us to use deep learning on smaller datasets
successfully

	Slide 1: Introduction to Deep Learning
	Slide 2: What we will cover
	Slide 3: Classical/deep methods
	Slide 4: Deep learning as representation learning
	Slide 5: Deep learning as representation learning
	Slide 6: Neural networks
	Slide 7: Neural networks
	Slide 8: Change of function
	Slide 9: Neural networks
	Slide 10: Deep neural networks: Multi layer perceptron
	Slide 11: Dense layers
	Slide 12: Activation function: Linear
	Slide 13: Activation function: Sigmoid
	Slide 14: Activation function: Tanh
	Slide 15: Activation function: ReLU
	Slide 16: Activation function: LeakyReLU
	Slide 17: Writing a DNN in PyTorch
	Slide 18: Back Propagation
	Slide 19: Optimisation Stochastic gradient descent
	Slide 20: Optimisation: Adaptive methods
	Slide 21: Optimisation: Adam
	Slide 22: Building block: Adam optimizer
	Slide 23: Building block – a training loop
	Slide 24: Convolutional Neural Nets: The power of inductive bias
	Slide 25: Some pitfalls with MLPs for images
	Slide 26: Early CNNs
	Slide 27: Structure of a convolutional layer
	Slide 28: Convolution in action: Kernel
	Slide 29: Convolution in action: Padding
	Slide 30: Convolution in action: Striding
	Slide 31: Convolution in action: Pooling
	Slide 32: Convolution in action: Putting it together
	Slide 33: A deep CNN
	Slide 34: Building blocks: Convolution block
	Slide 35: Graphs: A more flexible convolution
	Slide 36: Key concepts

