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What we will cover

• The difference between deep and classical learning 

• The concept of representation learning

• The structure of a simple multi-layer perceptron

• How to write an MLP in PyTorch

• How a NN learns – optimisation and backpropagation

• The power of inductive bias

• The structure of a simple convolutional neural network



Classical/deep methods

• Classical: linear regression, trees etc..

• Deep: neural network type models



Deep learning as representation learning
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Deep learning as 
representation learning
• Traditional ML relies heavily on 

feature engineering before 
learning

• Deep learning learns the features 
as well as the relational model of 
interest

• Deep learning requires less 
manual input; but more data
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Neural networks

• Early NN

• Originally a device

• Intended for binary 
classification

• Produces a single output from 
a matrix of inputs, weights 
and biases



Neural networks

• Single layer

• Minsky and Papert showed 
they could not solve non-
linear classification



Change of function



Neural networks

• Back propagation

• Now gradients could be 
used to minimise error

• Modifications back 
propagate through the 
network using the chain 
rule



Deep neural networks: Multi layer perceptron
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Dense layers

• Also called fully connected layers
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Activation function: Linear

• The simplest form of 
activation function



Activation function: Sigmoid

• Vanishing gradient problem

• Secondly , its output isn’t zero 
centered. It makes the gradient 
updates go too far in different 
directions. 0 < output < 1, and it 
makes optimization harder.

• Sigmoids saturate and kill gradients.

• Sigmoids have slow convergence.



Activation function: Tanh
• Output is zero 

centered

• Usually preferred to 
sigmoid as it 
converges better

• Still it suffers from 
vanishing gradient 
problem



Activation function: ReLU

• 6 times improvement 
in convergence from 
Tanh function

• Should only be used 
within Hidden layers of 
a neural network 
model



Activation function: LeakyReLU
• Some ReLu gradients can 

be fragile during training 
and can die. 

• Cause a weight update 
which will makes it never 
activate on any data 
point again. 

• ReLu could result in Dead 
Neurons.



Writing a DNN in PyTorch

class MLP(nn.Module):

    def __init__(self, input_dim, output_dim):

        super().__init__()

        self.input_fc = nn.Linear(input_dim, 250)

        self.hidden_fc = nn.Linear(250, 100)

        self.output_fc = nn.Linear(100, output_dim)

    def forward(self, x):

        batch_size = x.shape[0]

        x = x.view(batch_size, -1)

        h_1 = F.relu(self.input_fc(x))

        h_2 = F.relu(self.hidden_fc(h_1))

        y_pred = self.output_fc(h_2)

        return y_pred, h_2

Go to notebook



Back Propagation
• Backprop

LOSS(L)
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dy[l]
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Notation:
dL/dy[l] => dy[l]



Optimisation Stochastic gradient descent

• Gradient descent – calculate the gradient of the loss of the entire set 
with respect to parameters

• SGD – calculated per sample rather than on the entire batch
• Much quicker to calculate, but can lead to high variance 

• Mini-batch SGD – calculate loss gradient on batches of set size
• Best of both worlds



Optimisation: Adaptive methods
• Some parameters update much more often than 

others

• Therefore different learning rates can be appropriate 
for different parameters

• Adagrad modifies the learning rate η at each time 
step for every parameter based on the past gradients 
computed for that parameter

𝜃𝑡 = 𝜃𝑡−1  −
𝜂

𝐺𝑡 + 𝜀
𝑔𝑡
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Current gradient



Optimisation: Adam

• Similar to Adagrad

• Add in information about the mean of the 
momentum of previous steps too

• Works very well in most situations

𝜃𝑡 = 𝜃𝑡−1  −
𝜂
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Building block: Adam optimizer

import torch.optim as optim

optimizer = optim.Adam(model.parameters())

criterion = nn.CrossEntropyLoss()



Building block – a training loop

Go to notebook

def train(model, iterator, optimizer, criterion, device):

    epoch_loss = 0

    epoch_acc = 0

    model.train()

    for (x, y) in tqdm(iterator, desc="Training", leave=False):

        x = x.to(device)

        y = y.to(device)

        optimizer.zero_grad()

        y_pred, _ = model(x)

        loss = criterion(y_pred, y)

        acc = calculate_accuracy(y_pred, y)

        loss.backward()

        optimizer.step()

        epoch_loss += loss.item()

        epoch_acc += acc.item()

    return epoch_loss / len(iterator), epoch_acc / len(iterator)



Convolutional Neural Nets: The power of 
inductive bias

The inductive bias (also known as learning bias) of a learning algorithm 
is the set of assumptions that the learner uses to predict outputs of 
given inputs that it has not encountered.

The need for biases in learning generalizations, CBM-TR 5-110, 
New Brunswick, New Jersey, USA: Rutgers University



Some pitfalls with MLPs for images

▪ No spatial awareness

▪ Parametric explosions



Early CNNs

▪ LeCun – restricting the number 
of parameters in a NN leads to 
better generalisation

▪ Also makes it possible to fit in 
memory

▪ Originally trained for digit 
recognition for the postal 
service 



Structure of a convolutional layer

▪ Kernel

▪ Pooling

▪ Activation



Convolution in action: Kernel

▪ Input + kernel -> activation map



Convolution in action: Padding

▪ Padding around the outside of images
▪ SAME: pad with zeros to make output.shape == input.shape

▪ VALID: no padding output.shape < input.shape



Convolution in action: Striding

▪ Controls how the filter slides across the image



Convolution in action: Pooling

▪ Use to compress between layers
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Convolution in action: Putting it together 

Input image – 1 channel

3 filters

Activation 

function

Activations – 3 channels

Max 

pooling

Output – 3 channels 

reduced dimensions



A deep CNN

Conv + ReLU

Max Pool

(224, 224, 64)

(112, 112, 128)

(56, 56, 256)

(28, 28, 512)
(14, 14, 1024)

(w, h, c)

▪ VGG-16

Fully connected (dense) layer



Building blocks: Convolution block

import torch.nn as nn

self.conv1 = nn.Conv2d(in_channels=1,

                       out_channels=6,

                       kernel_size=5)

Go to notebook

import torch.nn.functional as F

x = self.conv1(x)

x = F.max_pool2d(x, kernel_size=2)

x = F.relu(x)



Graphs: A more flexible convolution

https://distill.pub/2021/understanding-gnns/



Key concepts

• Deep learning is a qualitatively different process to classical ML

• Deep learning generally requires more data than classical ML

• Deep learning relies on representation learning

• How to write and train a neural network in PyTorch

• Inductive bias allows us to construct more general models

• Inductive bias can allow us to use deep learning on smaller datasets 
successfully
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